Author(s): Marcus Scheele
Publication: Bunsenmagazin, Issue 3 2020, Aspekte, Seiten: 57-61
Publisher: Deutsche Bunsen-Gesellschaft für physikalische Chemie e.V., Frankfurt
Language: English
DOI: 10.26125/yzn6-4t02
Introduction
In 1995, a very important paper was published, detailing the self-assembly of small crystallites of the semiconductor CdSe into a three-dimensional superstructure with long-range order and domain sizes of up to 50 μm.[1] Since each crystallite consists of just several thousand atoms spanning a diameter of under 5 nm, a single domain of the three-dimensional superstructure contains many millions of these nanocrystals (NC). In analogy to classical crystals which are ordered arrays of atoms, such three-dimensional superstructures are referred to as “superlattices”, in which the NCs function as “quasi-atomic” building blocks. The analogy to atoms continues as many semiconductor nanocrystals are small enough to fall into the large quantum confi nement regime, such that they exhibit discrete, atom-like electronic states.[2] Since this seminal paper, an overwhelming structural diversity of NC superlattices has been reported, which has not only been an aesthetically pleasing Eldorado for electron microscopists and crystallographers but also frequently served to reiterate the term "quasi-atoms". [3] Devices composed of these quasi-atoms are intensely investigated for application in solar cells, light-emitting diodes and lasers owing to the emergent optoelectronic properties expected for such quantum materials. A quarter of a century later, it appears justifi ed to ask whether these expectations were realistic and whether they may be met in the near future. Does structural order and orientation in NC superlattices really matter in that it signifi cantly changes the optoelectronic properties of the array compared to a disordered ensemble of the same NCs? What are the chemical challenges that can prevent the emergence of novel physical properties by design of the structure of a superlattice? This short perspective addresses these questions and provides recent examples to illustrate the state-of-the-art of self-assembled NC superlattices with emergent optoelectronic functionalities.
Cite this: Scheele, Marcus(2020): For what it’s worth: Long-Range Order and Orientation in Nanocrystal Superlattices. Bunsenmagazin 2020, 3: 57-61. Frankfurt am Main: Deutsche Bunsen-Gesellschaft für physikalische Chemie e.V. DOI: 10.26125/yzn6-4t02
References
[1] C. B. Murray, C. R. Kagan, M. G. Bawendi, Science 1995, 270, 1335–1338. |
[2] L. E. Brus, J. Chem. Phys. 1983, 79, 5566–5571. |
[3] a) E. V. Shevchenko, D. V. Talapin, N. A. Kotov, S. O’Brien, C. B. Murray, Nature 2006, 439, 55–59; b) M. Na gel, S. G. Hickey, A. Frömsdorf, A. Kornowski, H. Weller, Z. Phys. Chem. 2007, 221, 427–437 c) Z. Fa n, M. Grünwald, J. Am. Chem. Soc. 2019, 141, 1980-1988; d) M. A. Boles, M. Engel, D. V. Talapin, Chem. Rev. 2016, 116, 11220–11289. |
[4] W. Ch en, J. Zhong, J. Li, N. Saxena, L. P. Kreuzer, H. Liu, L. Song, B. Su, D. Yang, K. Wang et al., J. Phys. Chem. Lett. 2019, 10, 2058–2065. |
[5] P. Li ljeroth, K. Overgaag, A. Urbieta, B. Grandidier, B. Grandider, S. G. Hickey, D. Vanmaekelbergh, Phys. Rev. Lett. 2006, 97, 1–4. |
[6] A. P. Kaushik, B. Lukose, P. Clancy, ACS Nano 2014, 8, 2302–2317. |
[7] C.-S. Tan, H.-S. Chen, C.-Y. Chiu, S.-C. Wu, L.-J. Chen, M. H. Huang, Chem. Mater. 2016, 28, 1574–1580. |
[8] N. Ya zdani, S. Andermatt, M. Yarema, V. Farto, M. H. Bani-Hashemian, S. Volk, W. Lin, O. Yarema, M. Luisier, V. Wood, arxiv preprint 2019: https://arxiv.org/abs/1909.09739. |
[9] M. V. Kovalenko, M. Scheele, D. V. Talapin, Science 2009, 324, 1417–1420. |
[10] S. Sh aw, B. Yuan, X. Tian, K. J. Miller, B. M. Cote, J. L. Colaux, A. Migliori, M. G. Panthani, L. Cademartiri, Adv. Mater. 2016, 28, 8892–8899. |
[11] B. T. Diroll, X. Ma, Y. Wu, C. B. Murray, Nano. Lett. 2017, 17, 6501–6506. |
[12] a) A. An dré, C. Theurer, J. Lauth, S. Maiti, M. Hodas, M. Samadi Khoshkhoo, S. Kinge, A. J. Meixner, F. Schreiber, L. D. A. Siebbeles et al., Chem. Commun. 2017, 53, 1700–1703; b) S. Ma iti, S. Maiti, A. Maier, J. Hagenlocher, A. Chumakov, F. Schreiber, M. Scheele, J. Phys. Chem. C 2019, 123, 1519–1526; c) M. Sa madi Khoshkhoo, S. Maiti, F. Schreiber, T. Chassé, M. Scheele, ACS Appl. Mater. Interfaces 2017, 9, 14197–14206. |
[13] T. Ho lstein, Annals of Physics 1959, 8, 325–342. |
[14] N. Pr odanovic, N. Vukmirovic, Z. Ikonic, P. Harrison, D. Indjin, J. Phys. Chem. Lett. 2014, 5, 1335–1340. |
[15] R. A. Marcus, Angew. Chem. Int. Ed. 1993, 32, 1111–1121. |
[16] I.-H. Chu, M. Radulaski, N. Vukmirovic, H.-P. Cheng, L.-W. Wang, J. Phys. Chem. C 2011, 115, 21409–21415. |
[17] D. Zh erebetskyy, M. Scheele, Y. Zhang, N. Bronstein, C. Thompson, D. Britt, M. Salmeron, P. Alivisatos, L.-W. Wang, Science 2014, 344, 1380–1384. |
[18] H. Cö lfen, M. Antonietti, Angew. Chem. Int. Ed. 2005, 44, 5576–5591. |
[19] L. Ba hrig, S. G. Hickey, A. Eychmüller, Cryst. Eng. Comm. 2014, 16, 9408–9424. |
[20] a) I. A. Zaluzhnyy, R. P. Kurta, A. André, O. Y. Gorobtsov, M. Rose, P. Skopintsev, I. Besedin, A. V. Zozulya, M. Sprung, F. Schreiber et al., Nano Lett. 2017, 17, 3511–3517; b) R. Li , K. Bian, T. Hanrath, W. A. Bassett, Z. Wang, J. Am. Chem. Soc. 2014, 136, 12047–12055. |
[21] N. Mu kharamova, D. Lapkin, I. A. Zaluzhnyy, A. André, S. Lazarev, Y. Y. Kim, M. Sprung, R. P. Kurta, F. Schreiber, I. A. Vartanyants et al., Small 2019, 15, 1904954. |
[22] I. A. Zaluzhnyy, R. P. Kurta, M. Scheele, F. Schreiber, B. I. Ostrovskii, I. A. Vartanyants, Materials 2019, 12, 3464. |
[23] A. Ma ier, D. Lapkin, N. Mukharamova, P. Frech, D. Assalauova, A. Ignatenko, R. Khubbutdinov, S. Lazarev, M. Sprung, F. Laible et al., arxiv preprint 2020, https://arxiv.org/abs/2003.03266. |
[24] P. Gu yot-Sionnest, J. Phys. Chem. Lett. 2012, 3, 1169–1175. |
[25] O. Ch en, J. Zhao, V. P. Chauhan, J. Cui, C. Wong, D. K. Harris, H. Wei, H.-S. Han, D. Fukumura, R. K. Jain et al., Nat. Mater. 2013, 12, 445–451. |
[26] Y. Li u, M. Gibbs, J. Puthussery, S. Gaik, R. Ihly, H. W. Hillhouse, M. Law, Nano Lett. 2010, 10, 1960–1969. |
[27] M. I. Bodnarchuk, E. V. Shevchenko, D. V. Talapin, J. Am. Chem. Soc. 2011, 133, 20837–20849. |
[28] F. Fe tzer, A. Maier, M. Hodas, O. Geladari, K. Braun, A. J. Meixner, F. Schreiber, A. Schnepf, M. Scheele, arxiv preprint 2020, https://arxiv.org/abs/2002.06454. |
[29] S. Ke nzler, F. Fetzer, C. Schrenk, N. Pollard, A. R. Frojd, A. Z. Clayborne, A. Schnepf, Angew. Chem. Int. Ed. 2019, 58, 5902–5905. |
[30] O. L. Lazarenkova, A. A. Balandin, J. Appl. Phys. 2001, 89, 5509–5515. |
Download the full article