What diamonds can tell us about Biology?

What diamonds can tell us about Biology?

What diamonds can tell us about Biology?

Author(s):  Romana Schirhagl

Publication: Bunsenmagazin, Issue 5 2018, Aspekte, Seiten: 184 -193

Publisher: Deutsche Bunsen-Gesellschaft für physikalische Chemie e.V., Frankfurt

Language: English

DOI: 10.26125/mr6j-dj63



Diamonds are so popular they almost do not need an introduction. But beyond the sparkle diamond have also less known and to my opinion even more exciting properties. They are among the hardest materials on earth and are commonly used as abrasives as well as for drilling or cutting. Due to their unique optical properties they are used in all kinds of instruments as for example in infrared spectroscopy measuring cells or as optical elements. Due to their low electrical conductivity and high thermal conductivity, a rare combination of properties, they are also used in all kinds of electronic devices like transistors[1], sensors[2] or other applications like catalysts[3]. Many of these devices are outperformed by conventional devices (from other materials) at room temperature. However, under harsh conditions like high pressure, high temperature or high power applications, the diamond devices can shine, whereas the competition often does not function at all under these conditions[4].

Here I would like to focus on yet another unique property of diamond. The quantum information field first recognized that diamonds can contain very stable defects and their magneto-optical properties[5]. Since they are extremely photo stable and never bleach these defects in particles are investigated as biolabels[6, 7, 8]. They change their optical properties based on their magnetic surrounding. This means that the defects can convert a magnetic resonance signal into an optical signal. Since optical signals are much easier to detect (they are higher in energy and thus can be measured by photon counting) this technique reaches unprecedented sensitivity. In fact this method is so sensitive that the faint signal of a single electron[9] or of a few nuclear spins[10, 11, 12] can be detected. And since optical signals can also be located very accurately this technique achieves nanoscale resolution.


Cite this: Romana Schirhagl (2018): What diamonds can tell us about Biology?. Bunsenmagazin 2018, 5: 184-193. Frankfurt am Main: Deutsche Bunsen-Gesellschaft für physikalische Chemie e.V. DOI: 10.26125/mr6j-dj63





[1] Matsumoto, T., Kato, H., Oyama, K., Makino, T., Ogura, M., Takeuchi, D., Inokuma, T., Tokuda, N. and Yamasaki, S., Inversion channel diamond metal-oxide-semiconductor field-effect transistor with normally off characteristics. Scientific reports, 6, 31585. (2016).

[2] Garrido, J.A., Härtl, A., Kuch, S., Stutzmann, M., Williams, O.A. and Jackmann, R.B., p H sensors based on hydrogenated diamond surfaces. Applied Physics Letters, 86, 073504. (2005).

[3] Zhu, D., Zhang, L., Ruther, R.E. and Hamers, R.J., Photo-illuminated diamond as a solid-state source of solvated electrons in water for nitrogen reduction. Nature materials, 12, p.836. (2013).

[4] Wort, C.J. and Balmer, R.S., Diamond as an electronic material. Materials Today, 11, pp.22-28. (2008).

[5] Gruber, A., Dräbenstedt, A., Tietz, C., Fleury, L., Wrachtrup, J. and Von Borczyskowski, C., Scanning confocal optical microscopy and magnetic resonance on single defect centers. Science, 276, pp.2012-2014. (1997).

[6] Hemelaar, S.R., de Boer, P., Chipaux, M., Zuidema, W., Hamoh, T., Martinez, F.P., Nagl, A., Hoogenboom, J.P., Giepmans, B.N.G. and Schirhagl, R., Nanodiamonds as multi-purpose labels for microscopy. Scientific reports, 7, p.720. (2017).

[7] Chao, J.I., Perevedentseva, E., Chung, P.H., Liu, K.K., Cheng, C.Y., Chang, C.C. and Cheng, C.L., Nanometer-sized diamond particle as a probe for biolabeling. Biophysical journal, 93, pp.2199-2208. (2007).

[8] Mohan, N., Tzeng, Y.K., Yang, L., Chen, Y.Y., Hui, Y.Y., Fang, C.Y. and Chang, H.C., Sub-20-nm Fluorescent Nanodiamonds as Photostable Biolabels and Fluorescence Resonance Energy Transfer Donors. Advanced materials, 22, pp.843-847. (2010).

[9] Grinolds, M.S., Hong, S., Maletinsky, P., Luan, L., Lukin, M.D., Walsworth, R.L. and Yacoby, A., Nanoscale magnetic imaging of a single electron spin under ambient conditions. Nature Physics, 9, p.215. (2013).

[10] Zhao, N., Hu, J.L., Ho, S.W., Wan, J.T. and Liu, R.B.,. Atomicscale magnetometry of distant nuclear spin clusters via nitrogen-vacancy spin in diamond. Nature nanotechnology, 6, p.242. (201).

[11] Staudacher, T., Shi, F., Pezzagna, S., Meijer, J., Du, J., Meriles, C.A., Reinhard, F. and Wrachtrup, J., Nuclear magnetic resonance spectroscopy on a (5-nanometer) 3 sample volume. Science, 339, pp.561-563. (2013).

[12] Mamin, H.J., Kim, M., Sherwood, M.H., Rettner, C.T., Ohno, K., Awschalom, D.D. and Rugar, D., 2013. Nanoscale nuclear magnetic resonance with a nitrogen-vacancy spin sensor. Science, 339, pp.557-560.

[13] Loretz, M., Rosskopf, T. and Degen, C.L., Radio-frequency magnetometry using a single electron spin. Physical review letters, 110, p.017602. (2013).

[14] Boss, J.M., Cujia, K.S., Zopes, J. and Degen, C.L., Quantum sensing with arbitrary frequency resolution. Science, 356, pp.837- 840. (2017).

[15] Glenn, D.R., Bucher, D.B., Lee, J., Lukin, M.D., Park, H. and Walsworth, R.L., High-resolution magnetic resonance spectroscopy using a solid-state spin sensor. Nature, 555, p.351. (2018).

[16] Kucsko, G., Maurer, P.C., Yao, N.Y., Kubo, M.I.C.H.A.E.L., Noh, H.J., Lo, P.K., Park, H. and Lukin, M.D., Nanometre-scale thermometry in a living cell. Nature, 500, p.54. (2013).

[17] Dolde, F., Fedder, H., Doherty, M.W., Nöbauer, T., Rempp, F., Balasubramanian, G., Wolf, T., Reinhard, F., Hollenberg, L.C., Jelezko, F. and Wrachtrup, J., Electric-field sensing using single diamond spins. Nature Physics, 7, p.459. (2011).

[18] McGuinness, L.P., Yan, Y., Stacey, A., Simpson, D.A., Hall, L.T., Maclaurin, D., Prawer, S., Mulvaney, P., Wrachtrup, J., Caruso, F. and Scholten, R.E., Quantum measurement and orientation tracking of fluorescent nanodiamonds inside living cells. Nature nanotechnology, 6, p.358. (2011).

[19] Teissier, J., Barfuss, A., Appel, P., Neu, E. and Maletinsky, P., Strain coupling of a nitrogen-vacancy center spin to a diamond mechanical oscillator. Physical review letters, 113, p.020503. (2014).

[20] Van Oort, E. and Glasbeek, M., Electric-field-induced modulation of spin echoes of NV centers in diamond. Chemical Physics Letters, 168, pp.529-532. (1990).

[21] Acosta, V.M., Bauch, E., Ledbetter, M.P., Waxman, A., Bouchard, L.S. and Budker, D., Temperature dependence of the nitrogenvacancy magnetic resonance in diamond. Physical review letters, 104, p.070801. 2010.

[22] Chipaux, M., Toraille, L., Larat, C., Morvan, L., Pezzagna, S., Meijer, J. and Debuisschert, T., Wide bandwidth instantaneous radio frequency spectrum analyzer based on nitrogen vacancy centers in diamond. Applied Physics Letters, 107, p.233502. (2015).

[23] Maze, J.R., Gali, A., Togan, E., Chu, Y., Trifonov, A., Kaxiras, E. and Lukin, M.D., Properties of nitrogen-vacancy centers in diamond: the group theoretic approach. New Journal of Physics, 13, p.025025. (2011).

[24] Rendler, T., Neburkova, J., Zemek, O., Kotek, J., Zappe, A., Chu, Z., Cigler, P. and Wrachtrup, J., Optical imaging of localized chemical events using programmable diamond quantum nanosensors. Nature communications, 8, p.14701. (2017).

[25] Balasubramanian, G., Neumann, P., Twitchen, D., Markham, M., Kolesov, R., Mizuochi, N., Isoya, J., Achard, J., Beck, J., Tissler, J. and Jacques, V., Ultralong spin coherence time in isotopically engineered diamond. Nature materials, 8, p.383. (2009).

[26] Ishiwata, H., Nakajima, M., Tahara, K., Ozawa, H., Iwasaki, T. and Hatano, M., Perfectly aligned shallow ensemble nitrogenvacancy centers in (111) diamond. Applied Physics Letters, 111, p.043103. (2017).

[27] Lesik, M., Plays, T., Tallaire, A., Achard, J., Brinza, O., William, L., Chipaux, M., Toraille, L., Debuisschert, T., Gicquel, A. and Roch, J.F., Preferential orientation of NV defects in CVD diamond films grown on (113)-oriented substrates. Diamond and Related Materials, 56, pp.47-53. (2015).

[28] Ong, S.Y., Chipaux, M., Nagl, A. and Schirhagl, R., Shape and crystallographic orientation of nanodiamonds for quantum sensing. Physical Chemistry Chemical Physics, 19, pp.10748-10752. (2017).

[29] Boudou, J.P., Curmi, P.A., Jelezko, F., Wrachtrup, J., Aubert, P., Sennour, M., Balasubramanian, G., Reuter, R., Thorel, A. and Gaffet, E., High yield fabrication of fluorescent nanodiamonds. Nanotechnology, 20, p.235602. 2009.

[30] Trusheim, M.E., Li, L., Laraoui, A., Chen, E.H., Bakhru, H., Schrö der, T., Gaathon, O., Meriles, C.A. and Englund, D., Scalable fabrication of high purity diamond nanocrystals with long-spin-coherence nitrogen vacancy centers. Nano letters, 14, pp.32-36. (2013).

[31] Schirhagl, R., Chang, K., Loretz, M. and Degen, C.L., Nitrogenvacancy centers in diamond: nanoscale sensors for physics and biology. Annual review of physical chemistry, 65, pp.83-105. (2014).

[32] Ofori-Okai, B.K., Pezzagna, S., Chang, K., Loretz, M., Schirhagl, R., Tao, Y., Moores, B.A., Groot-Berning, K., Meijer, J. and Degen, C.L., Spin properties of very shallow nitrogen vacancy defects in diamond. Physical Review B, 86, p.081406. (2012).

[33] Müller, T., Hepp, C., Pingault, B., Neu, E., Gsell, S., Schreck, M., Sternschulte, H., Steinmüller-Nethl, D., Becher, C. and Atatüre, M., Optical signatures of silicon-vacancy spins in diamond. Nature communications, 5, p.3328. (2014.)

[34] Hepp, C., Müller, T., Waselowski, V., Becker, J.N., Pingault, B., Sternschulte, H., Steinmüller-Nethl, D., Gali, A., Maze, J.R., Atatüre, M. and Becher, C., Electronic structure of the silicon vacancy color center in diamond. Physical Review Letters, 112, p.036405. (2014).

[35] Iwasaki, T., Ishibashi, F., Miyamoto, Y., Doi, Y., Kobayashi, S., Miyazaki, T., Tahara, K., Jahnke, K.D., Rogers, L.J., Naydenov, B. and Jelezko, F., Germanium-vacancy single color centers in diamond. Scientific reports, 5, p.12882. (2015).

[36] Iwasaki, T., Miyamoto, Y., Taniguchi, T., Siyushev, P., Metsch, M.H., Jelezko, F. and Hatano, M., Tin-vacancy quantum emitters in diamond. Physical review letters, 119, p.253601. (2017).

[37] Hemelaar, S.R., de Boer, P., Chipaux, M., Zuidema, W., Hamoh, T., Martinez, F.P., Nagl, A., Hoogenboom, J.P., Giepmans, B.N.G. and Schirhagl, R., Nanodiamonds as multi-purpose labels for microscopy. Scientific reports, 7, p.720. 2017.

[38] Grinolds, M.S., Hong, S., Maletinsky, P., Luan, L., Lukin, M.D., Walsworth, R.L. and Yacoby, A., Nanoscale magnetic imaging of a single electron spin under ambient conditions. Nature Physics, 9, p.215. (2013).

[39] Steinert, S., Ziem, F., Hall, L.T., Zappe, A., Schweikert, M., Götz, N., Aird, A., Balasubramanian, G., Hollenberg, L. and Wrachtrup, J., Magnetic spin imaging under ambient conditions with subcellular resolution. Nature communications, 4, p.1607. (2013).

[40] Kost, M., Cai, J. and Plenio, M.B., Resolving single molecule structures with nitrogen-vacancy centers in diamond. Scientific reports, 5, p.11007. (2015).

[41] Shi, F., Zhang, Q., Wang, P., Sun, H., Wang, J., Rong, X., Chen, M., Ju, C., Reinhard, F., Chen, H. and Wrachtrup, J., Singleprotein spin resonance spectroscopy under ambient conditions. Science, 347, pp.1135-1138. 2015.

[42] Ermakova, A., Pramanik, G., Cai, J.M., Algara-Siller, G., Kaiser, U., Weil, T., Tzeng, Y.K., Chang, H.C., McGuinness, L.P., Plenio, M.B. and Naydenov, B., Detection of a few metallo-protein molecules using color centers in nanodiamonds. Nano letters, 13, pp.3305-3309. 2013.

[43] Schäfer-Nolte, E., Schlipf, L., Ternes, M., Reinhard, F., Kern, K. and Wrachtrup, J., Tracking temperature-dependent relaxation times of ferritin nanomagnets with a wideband quantum spectrometer. Physical review letters, 113, p.217204. 2014.

[44] Hall, L.T., Hill, C.D., Cole, J.H., Städler, B., Caruso, F., Mulvaney, P., Wrachtrup, J. and Hollenberg, L.C., Monitoring ion-channel function in real time through quantum decoherence. Proceedings of the National Academy of Sciences, 107, pp.18777- 18782. (2010).

[45] Sigaeva, A., Hamoh, T., Perona, F. and Schirhagl, R., Fluorescent nanodiamonds: potential free radical detectors in live cells. Free Radical Biology and Medicine, 120, p.S87. (2018).

[46] Chipaux, M., van der Laan, K.J., Hemelaar, S.R., Hasani, M., Zheng, T. and Schirhagl, R., Nanodiamonds and Their Applications in Cells. Small, p.1704263. (2018).

[47] Perevedentseva, E., Hong, S.F., Huang, K.J., Chiang, I.T., Lee, C.Y., Tseng, Y.T. and Cheng, C.L., Nanodiamond internalization in cells and the cell uptake mechanism. Journal of nanoparticle research, 15, p.1834. 2013.

[48] Faklaris, O., Joshi, V., Irinopoulou, T., Tauc, P., Sennour, M., Girard, H., Gesset, C., Arnault, J.C., Thorel, A., Boudou, J.P. and Curmi, P.A., Photoluminescent diamond nanoparticles for cell labeling: study of the uptake mechanism in mammalian cells. ACS nano, 3, pp.3955-3962. 2009.

[49] Chu, Z., Zhang, S., Zhang, B., Zhang, C., Fang, C.Y., Rehor, I., Cigler, P., Chang, H.C., Lin, G., Liu, R. and Li, Q., Unambiguous observation of shape effects on cellular fate of nanoparticles. Scientific reports, 4, p.4495. (2014).

[50] Zheng, T., Perona Martí nez, F., Storm, I.M., Rombouts, W., Sprakel, J., Schirhagl, R. and De Vries, R., Recombinant Protein Polymers for Colloidal Stabilization and Improvement of Cellular Uptake of Diamond Nanosensors. Analytical chemistry, 89, pp.12812-12820. (2017).

[51] Rehor, I., Mackova, H., Filippov, S.K., Kucka, J., Proks, V., Slegerova, J., Turner, S., Van Tendeloo, G., Ledvina, M., Hruby, M. and Cigler, P., Fluorescent nanodiamonds with bioorthogonally reactive protein-resistant polymeric coatings. ChemPlus- Chem, 79, pp.21-24. (2014).

[52] Rehor, I., Slegerova, J., Kucka, J., Proks, V., Petrakova, V., Adam, M.P., Treussart, F., Turner, S., Bals, S., Sacha, P. and Ledvina, M., Fluorescent nanodiamonds embedded in biocompatible translucent shells. Small, 10, pp.1106-1115. (2014).

[53] Zhang, B., Li, Y., Fang, C.Y., Chang, C.C., Chen, C.S., Chen, Y.Y. and Chang, H.C., Receptor-mediated cellular uptake of folateconjugated fluorescent nanodiamonds: A combined ensemble and single-particle study. Small, 5, pp.2716-2721. (2009).

[54] Hemelaar, S.R., Laan, K.J., Hinterding, S.R., Koot, M.V., Ellermann, E., Perona-Martinez, F.P., Roig, D., Hommelet, S., Novarina, D., Takahashi, H. and Chang, M., Generally Applicable Transformation Protocols for Fluorescent Nanodiamond Internalization into Cells. Scientific Reports, 7, p.5862. 2017.

[55] Lin, Y.C., Wu, K.T., Lin, Z.R., Perevedentseva, E., Karmenyan, A., Lin, M.D. and Cheng, C.L., Nanodiamond for biolabelling and toxicity evaluation in the zebrafish embryo in vivo. Journal of biophotonics, 9, pp.827-836. (2016).

[56] Thomas, V., Halloran, B.A., Ambalavanan, N., Catledge, S.A. and Vohra, Y.K., In vitro studies on the effect of particle size on macrophage responses to nanodiamond wear debris. Acta biomaterialia, 8, pp.1939-1947. 2012.

[57] Zakrzewska, K.E., Samluk, A., Wierzbicki, M., Jaworski, S., Kutwin, M., Sawosz, E., Chwalibog, A., Pijanowska, D.G. and Pluta, K.D., Analysis of the cytotoxicity of carbon-based nanoparticles, diamond and graphite, in human glioblastoma and hepatoma cell lines. PloS one, 10, p.e0122579. (2015).

[58] Hemelaar, S.R., Saspaanithy, B., L’Hommelet, S.R., Perona Martinez, F.P., van der Laan, K.J. and Schirhagl, R., The Response of HeLa Cells to Fluorescent NanoDiamond Uptake. Sensors, 18, p.355. (2018).

[59] Li, J., Zhu, Y., Li, W., Zhang, X., Peng, Y. and Huang, Q., Nanodiamonds as intracellular transporters of chemotherapeutic drug. Biomaterials, 31, pp.8410-8418. (2010).

[60] Schrand, A.M., Huang, H., Carlson, C., Schlager, J.J., Ōsawa, E., Hussain, S.M. and Dai, L., Are diamond nanoparticles cytotoxic?. The journal of physical chemistry B, 111, pp.2-7. 2007.

[61] Simpson, D.A., Thompson, A.J., Kowarsky, M., Zeeshan, N.F., Barson, M.S., Hall, L.T., Yan, Y., Kaufmann, S., Johnson, B.C., Ohshima, T. and Caruso, F., In vivo imaging and tracking of individual nanodiamonds in drosophila melanogaster embryos. Biomedical optics express, 5, pp.1250-1261. (2014).

[62] Haziza, S., Mohan, N., Loe-Mie, Y., Lepagnol-Bestel, A.M., Massou, S., Adam, M.P., Le, X.L., Viard, J., Plancon, C., Daudin, R. and Koebel, P., Fluorescent nanodiamond tracking reveals intraneuronal transport abnormalities induced by brain-disease-related genetic risk factors. Nature nanotechnology, 12, p.322. (2017).

[63] Hall, L.T., Beart, G.C.G., Thomas, E.A., Simpson, D.A., McGuinness, L.P., Cole, J.H., Manton, J.H., Scholten, R.E., Jelezko, F., Wrachtrup, J. and Petrou, S., High spatial and temporal resolution wide-field imaging of neuron activity using quantum NV-diamond. Scientific reports, 2, p.401. (2012).

[64] Barry, J.F., Turner, M.J., Schloss, J.M., Glenn, D.R., Song, Y., Lukin, M.D., Park, H. and Walsworth, R.L., Optical magnetic detection of single-neuron action potentials using quantum defects in diamond. Proceedings of the National Academy of Sciences, 113, pp.14133-14138. (2016).

[65] Karadas, M., Wojciechowski, A.M., Huck, A., Dalby, N.O., Andersen, U.L. and Thielscher, A., Feasibility and resolution limits of optomagnetic imaging of neural network activity in brain slices using color centers in diamond. Scientific reports, 8, p.4503. (2018).

[66] Rosskopf, T., Dussaux, A., Ohashi, K., Loretz, M., Schirhagl, R., Watanabe, H., Shikata, S., Itoh, K.M. and Degen, C.L., Investigation of surface magnetic noise by shallow spins in diamond. Physical review letters, 112, p.147602. (2014).

[67] Tetienne, J.P., de Gille, R.W., Broadway, D.A., Teraji, T., Lillie, S.E., McCoey, J.M., Dontschuk, N., Hall, L.T., Stacey, A., Simpson, D.A. and Hollenberg, L.C.L., Spin properties of dense nearsurface ensembles of nitrogen-vacancy centers in diamond. Physical Review B, 97, p.085402. (2018).

[68] Stanwix, P.L., Pham, L.M., Maze, J.R., Le Sage, D., Yeung, T.K., Cappellaro, P., Hemmer, P.R., Yacoby, A., Lukin, M.D. and Walsworth, R.L., Coherence of nitrogen-vacancy electronic spin ensembles in diamond. Physical Review B, 82, p.201201. (2010).

[69] Nagl, A., Hemelaar, S.R. and Schirhagl, R., Improving surface and defect center chemistry of fluorescent nanodiamonds for imaging purposes – a review. Analytical and bioanalytical chemistry, 407, pp.7521-7536. (2015).

[70] Personal communication with Arne Wickenbrock


Download the  Initiates file downloadfull article