BM52015/10.26125/8ra9-yb54

Structure and membrane micro-domain localization of ras Proteins

Structure and membrane micro-domain localization of ras Proteins

Author(s): Katrin Weise

Publication: Bunsenmagazin, Issue 5 2015, Aspekte, Seiten: 169 - 175

Publisher: Deutsche Bunsen-Gesellschaft für physikalische Chemie e.V., Frankfurt

Language: English

DOI: 10.26125/8ra9-yb54

 

Introduction

Small GTPases of the rat sarcoma (Ras) superfamily act as binary molecular switches between a GDP-bound inactive and GTP-bound active state and critically regulate numerous biological processes, such as cell proliferation, differentiation, survival, and apoptosis. As peripheral plasma membrane proteins they hold a central position in the transduction of extracellular signals from cell surface receptors across the plasma membrane to intracellular signaling cascades. Mutations in Ras proteins that lead to aberrant signaling are found in approximately 20-30 % of all human cancers [1, 2]. Thereby, mutated Ras is maintained in a constitutively active GTP-bound state and fails to switch off the signal for cell growth. [...]

 

Cite this: Katrin Weise (2015): Structure and membrane micro-domain localization of ras Proteins. Bunsenmagazin 2015, 5: 169-175. Frankfurt am Main: Deutsche Bunsen-Gesellschaft für physikalische Chemie e.V. DOI: 10.26125/8ra9-yb54

References

[1] Bos, J. L. Cancer Res. 1989, 49, 4682–4689.

[2] Prior, I. A.; Lewis, P. D.; Mattos, C. Cancer Res. 2012, 72, 2457–2467.

[3] Schmick, M.; Kraemer, A.; Bastiaens, P. I. H. Trends Cell Biol. 2015, 25, 190–197.

[4] Parton, R. G.; Hancock, J. Trends Cell Biol. 2004, 14, 141–147.

[5] Prior, I. A.; Muncke, C.; Parton, R. G.; Hancock, J. F. J. Cell Biol. 2003, 160, 165–170.

[6] Plowman, S. J.; Ariotti, N.; Goodall, A.; Parton, R. G.; Hancock, J. F. Mol. Cell Biol. 2008, 28, 4377–4385.

[7] Omerovic, J.; Prior, I. A. FEBS J. 2009, 276, 1817–1825.

[8] Simons, K.; Toomre, D. Nat. Rev. Mol. Cell Biol. 2000, 1, 31–41.

[9] Kuzmin, P. I.; Akimov, S. A.; Chizmadzhev, Y. A.; Zimmerberg, J.; Cohen, F. S. Biophys. J. 2005, 88, 1120-1133.

[10] Garcia-Sáez, A. J.; Chiantia, S.; Schwille, P. J. Biol. Chem. 2007, 16, 33537-33544.

[11] Bader, B.; Kuhn, K.; Owen, D. J.; Waldmann, H.; Wittinghofer, A.; Kuhlmann, J. Nature 2000, 403, 223–226.

[12] Chen, Y.-X.; Koch, S.; Uhlenbrock, K.; Weise, K.; Das, D.; Gremer, L.; Brunsveld, L.; Wittinghofer, A.; Winter, R.; Triola, G.; Waldmann, H. Angew. Chem. Int. Ed. 2010, 49, 6090–6095.

[13] Kapoor, S.; Werkmuller, A.; Denter, C.; Zhai, Y.; Markgraf, J.; Weise, K.; Opitz, N.; Winter, R. Biochim. Biophys. Acta 2011, 1808, 1187–1195.

[14] Evers, F.; Jeworrek, C.; Weise, K.; Tolan, M.; Winter, R. Soft Matter 2012, 8, 2170–2175.

[15] Weise, K.; Triola, G.; Brunsveld, L.; Waldmann, H.; Winter, R. J. Am. Chem. Soc. 2009, 131, 1557–1564.

[16] Weise, K.; Kapoor, S.; Denter, C.; Nikolaus, J.; Opitz, N.; Koch, S.; Triola, G.; Herrmann, A.; Waldmann, H.; Winter, R. J. Am. Chem. Soc. 2011, 133, 880–887.

[17] Vogel, A.; Reuther, G.; Weise, K.; Triola, G.; Nikolaus, J.; Tan, K.- T.; Nowak, C.; Herrmann, A.; Waldmann, H.; Winter, R.; Huster, D. Angew. Chem. Int. Ed. 2009, 48, 8784–8787.

[18] Vogel, A.; Nikolaus, J.; Weise, K.; Triola, G.; Waldmann, H.; Winter, R.; Herrmann, A.; Huster, D. Biol. Chem. 2014, 395, 779–789.

[19] Tian, T.; Harding, A.; Inder, K.; Plowman, S.; Parton, R. G.; Hancock, J. F. Nature Cell Biol. 2007, 9, 905–914.

[20] Kapoor, S.; Weise, K.; Erlkamp, M.; Triola, G.; Waldmann, H.; Winter, R. Eur. Biophys. J. 2012, 41, 801–813.

[21] Kapoor, S.; Triola, G.; Vetter, I. R.; Erlkamp, M.; Waldmann, H.; Winter, R. Proc. Natl. Acad. Sci. U. S. A. 2012, 109, 460–465.

[22] Hanzal-Bayer, M.; Renault, L., Roversi, P.; Wittinghofer, A.; Hillig, R. C. EMBO J. 2002, 21, 2095-2106.

[23] Nancy, V.; Callebaut, I.; El Marjou, A.; de Gunzburg, J. J. Biol. Chem. 2002, 277, 15076–15084.

[24] Chandra, A.; Grecco, H. E.; Pisupati, V.; Perera, D.; Cassidy, L.; Skoulidis, F.; Ismail, S. A.; Hedberg, C.; Hanzal-Bayer, M.; Venkitaraman, A. R.; Wittinghofer, A.; Bastiaens, P. I. H. Nat. Cell Biol. 2011, 14, 148–158.

[25] Schmick, M.; Vartak, N.; Papke, B.; Kovacevic, M.; Truxius, D. C.; Rossmannek, L.; Bastiaens, P. I. H. Cell 2014, 157, 459–471.

[26] Ismail, S. A.; Chen, Y.-X.; Rusinova, A.; Chandra, A.; Bierbaum, M.; Gremer, L.; Triola, G.; Waldmann, H.; Bastiaens, P. I. H.; Wittinghofer, A. Nat. Chem. Biol. 2011, 7, 942–949.

[27] Bhagatji, P.; Leventis, R.; Rich, R.; Lin, C.-j.; Silvius, J. R. Biophys. J. 2010, 99, 3327–3335.

[28] Weise, K.; Kapoor, S.; Werkmüller, A.; Möbitz, S.; Zimmermann, G.; Triola, G.; Waldmann, H.; Winter, R. J. Am. Chem. Soc. 2012, 134, 11503–11510.

[29] Scott, R. E. Science 1976, 194, 743–745.

[30] Baumgart, T.; Hammond, A. T.; Sengupta, P.; Hess, S. T.; Holowka, D. A.; Baird, B. A.; Webb, W. W. Proc. Natl. Acad. Sci. U. S. A. 2007, 104, 3165–3170.

[31] Seeliger, J.; Erwin, N.; Rosin, C.; Kahse, M.; Weise, K.; Winter, R. Phys. Chem. Chem. Phys. 2015, 17, 7507–7513.

Get PDF

Download the  Initiates file downloadfull article