Author(s): Rafael Trocoli & Fabio La Mantia
Publication: Bunsenmagazin, Issue 4 2015, Aspekte, Seiten: 150 - 154
Publisher: Deutsche Bunsen-Gesellschaft für physikalische Chemie e.V., Frankfurt
Language: English
DOI: 10.26125/94hz-1y58
Introduction
The possibility to capture or release ions from or to an aqueous solution with high efficiency is becoming nowadays a very attractive technology. Indeed, such a technology could have multiple applications, such as recovery of energy from salinity gradients, desalination of seawater, and recovery of precious or valuable salts from aqueous or organic solutions. Several electrochemical and chemical methods, based on ion selective (anionic and cationic) or water selective membranes, have been developed in the years [1]. They all suffer of similar drawbacks, which are relative to the use of membranes: rapid fouling due to the presence of organic matter in the water; clogging of the pores with the salt; lower efficiency at higher salinity gradient; poor selectivity towards single ions [2]. To overcome these drawbacks, capacitive de-ionization and mixing was developed by Brogioli [3]. This electrochemical method is based on the use of materials for supercapacitors and ultracapacitors to capture and release ions from the solution. [...]
Cite this: Rafael Trocoli, Fabio La Mantia (2015): Electrochemical ion pumping: a versatile process for electrochemical energy conversion. Bunsenmagazin 2015, 4: 150-154. Frankfurt am Main: Deutsche Bunsen-Gesellschaft für physikalische Chemie e.V. DOI: 10.26125/94hz-1y58
References
[1] a) R. E. Pattle, Nature 1954, 174, 660; b) O. Levenspiel, N. D. Nevers, Science 1974, 183, 157-160; c) J. N. Weinstein, F. B. Leitz, Science 1976, 191, 557-559; d) B. H. Clampitt, F. E. Kiviat, Science 1976, 194, 719-720.
[2] A. T. Jones, W. Finley, in Oceans 2003, 2003, 2284-2287.
[3] a) D. Brogioli, Phys. Rev. Lett. 2009, 103, 058501/058501- 058501/058504; b) S. Porada, L. Weinstein, R. Dash, A. van der Wal, M. Br yjak, Y. Gogotsi, P. M. Biesheuvel, ACS Appl. Mater. Inter faces 2012, 4, 1194-1199.
[4] F. La Mantia, M. Pasta, H. D. Deshazer, B. E. Logan, Y. Cui, Nano Lett. 2011, 11, 1810-1813.
[5] H. D. Deshazer, F. La Mantia, C. Wessells, R. A. Huggins, Y. Cui, J. Electrochem. Soc. 2011, 158, A1079-A1082.
[6] M. Pasta, A. Battistel, F. La Mantia, Energy Environ. Sci. 2012, 5, 9487-9491.
[7] J. M. Tarascon, Nat. Chem. 2010, 2, 510.
[8] D. E. Garrett, Handbook of lithium and natural calcium chloride., 1 ed., Elsevier Academic Press, Amsterdam, 2004.
[9] a) H. Kanoh, K. Ooi, Y. Miyai, S. Katoh, Separation Science and Technology 1993, 28, 643–651; b) H. Kanoh, Q. Feng, Y. Miyai, K. Ooi, J. Electrochem. Soc. 1993, 140, 3162-3166; c) H. Kanoh, K. Ooj, Y. Miyai, S. Katob; d) J. H. Lee, S. H. Yu, C. S. Kim, Y. E. Sung, J. Y. Yoon, Phys. Chem. Chem. Phys. 2013, 15, 7690-7695.
[10] H. Kanoh, Q. Feng, Y. Miyai, K. Ooi, J. Electrochem. Soc. 1995, 142, 702-707.
[11] R. Trócoli, A. Battistel, F. La Mantia, Chem. Eur. J. 2014, 20, 9888-9891.
Download the full article