BM32015/10.26125/4w64-yq31

Elucidating the structure of solid/electrolyte Interfaces

Elucidating the structure of solid/electrolyte Interfaces

Author(s): Qingyun Hu, Hsiu-Wei Cheng, Philipp Stock, Thomas Utzig, Buddha R. Shrestha, Theodoros Baimpos & Markus Valtiner*

Publication: Bunsenmagazin, Issue 3 2015, Aspekte, Seiten: 104 - 110

Publisher: Deutsche Bunsen-Gesellschaft für physikalische Chemie e.V., Frankfurt

Language: English

DOI: 10.26125/4w64-yq31

 

Introduction

Solid electrolyte interfaces are central to reactivity, stability and self-organization in a large range of complementary fields and disciplines. It is widely appreciated, that solid|solution interfaces are central to processes involving cell-to-substrate interaction[1-3], self-assembly and self-organization in biological and biomaterials[4], stability of colloidal dispersions and electrochemical energy storage and electro-catalysis[5-6] as well as corrosion[7].

In all of these fields understanding, predicting and controlling solid|electrolyte interfaces is of overarching importance to further advance technologic applications of even the most diametrically opposed materials used e.g. in biomedical or energy storage and energy harvesting applications. As such, the structure of solid|solution interfaces has always been appreciated as essential to interfacial interactions and reactions, yet a direct experimental probing of the atomistic structure of a solid|electrolyte interface is still one of the most challenging fields in fundamental science. [...]

 

Cite this: Qingyun Hu, Hsiu-Wei Cheng, Philipp Stock, Thomas Utzig, Buddha R. Shrestha, Theodoros Baimpos, Markus Valtiner* (2015): Elucidating the structure of solid/electrolyte Interfaces. Bunsenmagazin 2015, 3: 104-110. Frankfurt am Main: Deutsche Bunsen-Gesellschaft für physikalische Chemie e.V. DOI: 10.26125/4w64-yq31

References

[1] Arlett, J. L.; Myers, E. B.; Roukes, M. L., Comparative Advantages of Mechanical Biosensors. Nature Nanotechnology 2011, 6 (4), 203-215.

[2] Malanchi, I.; Santamaria-Martinez, A.; Susanto, E.; Peng, H.; Lehr, H.-A.; Delaloye, J.-F.; Huelsken, J., Interactions between Cancer Stem Cells and Their Niche Govern Metastatic Colonization. Nature 2012, 481 (7379), 85-95.

[3] Trappmann, B.; Gautrot, J. E.; Connelly, J. T.; Strange, D. G. T.; Li, Y.; Oyen, M. L.; Stuart, M. A. C.; Boehm, H.; Li, B.; Vogel, V.; Spatz, J. P.; Watt, F. M.; Huck, W. T. S., Extracellular-Matrix Tethering Regulates Stem-Cell Fate. Nature Materials 2012, 11 (7), 642-649.

[4] Lee, B. P.; Messersmith, P. B.; Israelachvili, J. N.; Waite, J. H., Mussel- Inspired Adhesives and Coatings. Annual review of materials research 2011, 41, 99-132.

[5] Mayrhofer, K. J. J.; Juhart, V.; Hartl, K.; Hanzlik, M.; Arenz, M., Adsorbate- Induced Surface Segregation for Core-Shell Nanocatalysts. Angewandte Chemie-International Edition 2009, 48 (19), 3529- 3531.

[6] Stamenkovic, V. R.; Mun, B. S.; Arenz, M.; Mayrhofer, K. J. J.; Lucas, C. A.; Wang, G.; Ross, P. N.; Markovic, N. M., Trends in Electrocatalysis on Extended and Nanoscale Pt-Bimetallic Alloy Surfaces. Nature Materials 2007, 6 (3), 241-247.

[7] Frankel, G. S., Pitting Corrosion of Metals. Journal of The Electrochemical Society 1998, 145 (6), 2186-2198.

[8] Israelachvili, J., Intermolecular and Surface Forces. Elsevier: 2010; Vol. Third Edition.

[9] Grass, M. E.; Karlsson, P. G.; Aksoy, F.; Lundqvist, M.; Wannberg, B.; Mun, B. S.; Hussain, Z.; Liu, Z., New Ambient Pressure Photoemission Endstation at Advanced Light Source Beamline 9.3.2. Review of Scientific Instruments 2010, 81 (5) 053106.

[10] Scheu, R.; Chen, Y.; Subinya, M.; Roke, S., Stern Layer Formation Induced by Hydrophobic Interactions: A Molecular Level Study. Journal of the American Chemical Society 2013, 135 (51), 19330- 19335.

[11] Scheu, R.; Rankin, B. M.; Chen, Y.; Jena, K. C.; Ben-Amotz, D.; Roke, S., Charge Asymmetry at Aqueous Hydrophobic Interfaces and Hydration Shells. Angewandte Chemie 2014, Int. Ed., 53 (36), 9560-9563.

[12] Keil, P.; Lutzenkirchen-Hecht, D.; Frahm, R., Selective Study of Atoms in Rough Surfaces by Means of Off-Specular Grazing Incidence Xafs. Europhysics Letters 2005, 71 (1), 77-83.

[13] Fenter, P.; Sturchio, N. C., Mineral-Water Interfacial Structures Revealed by Synchrotron X-Ray Scattering. Progress in Surface Science 2004, 77 (5-8), 171-258.

[14] Mezger, M.; Reichert, H.; Schoeder, S.; Okasinski, J.; Schroeder, H.; Dosch, H.; Palms, D.; Ralston, J.; Honkimaki, V., High-Resolution in Situ X-Ray Study of the Hydrophobic Gap at the Water-Octadecyl- Trichlorosilane Interface. Proceedings of the National Academy of Sciencies of the U. S. A. 2006, 103 (49), 18401-18404.

[15] Mezger, M.; Sedlmeier, F.; Horinek, D.; Reichert, H.; Pontoni, D.; Dosch, H., On the Origin of the Hydrophobic Water Gap: An X-Ray Reflectivity and Md Simulation Study. Journal of the American Chemical Society 2010, 132 (19), 6735-6741.

[16] Poynor, A.; Hong, L.; Robinson, I. K.; Granick, S.; Zhang, Z.; Fenter, P. A., How Water Meets a Hydrophobic Surface. Physical Review Letters 2006, 97, 266101.

[17] Mezger, M.; Ocko, B. M.; Reichert, H.; Deutsch, M., Surface Layering and Melting in an Ionic Liquid Studied by Resonant Soft X-Ray Reflectivity. Proceedings of National Acadmy of Sciences of the U. S. A. 2013, 110 (10), 3733-3737.

[18] Mezger, M.; Schroder, H.; Reichert, H.; Schramm, S.; Okasinski, J. S.; Schoder, S.; Honkimaki, V.; Deutsch, M.; Ocko, B. M.; Ralston, J.; Rohwerder, M.; Stratmann, M.; Dosch, H., Molecular Layering of Fluorinated Ionic Liquids at a Charged Sapphire (0001) Surface. Science 2008, 322 (5900), 424-428.

[19] Magnussen, O. M., Ordered Anion Adlayers on Metal Electrode Surfaces. Chemical Reviews 2002, 102 (3), 679-725.

[20] Kawai, S.; Foster, A. S.; Canova, F. F.; Onodera, H.; Kitamura, S.; Meyer, E., Atom Manipulation on an Insulating Surface at Room Temperature. Nature communications 2014, 5, 4403.

[21] Israelachvili, J., Differences between Non-Speci c and Bio-Specific, and between Equilibrium and Non-Equilibrium, Interactions in Biological Systems. Q. Rev. Biophys. 2005, 38, 331-337.

[22] Valtiner, M.; Donaldson, S. H., Jr.; Gebbie, M. A.; Israelachvili, J. N., Hydrophobic Forces, Electrostatic Steering, and Acid-Base Bridging between Atomically Smooth Self-Assembled Monolayers and End-Functionalized Pegolated Lipid Bilayers. Journal of the American Chemical Society 2012, 134 (3), 1746-1753.

[23] Donaldson, S. H., Jr.; Royne, A.; Kristiansen, K.; Rapp, M. V.; Das, S.; Gebbie, M. A.; Lee, D. W.; Stock, P.; Valtiner, M.; Israelachvili, J., Developing a General Interaction Potential for Hydrophobic and Hydrophilic Interactions. Langmuir: the ACS journal of surfaces and colloids 2014 Aug 20th.

[24] Valtiner, M.; Kristiansen, K.; Greene, G. W.; Israelachvili, J. N., Effect of Surface Roughness and Electrostatic Surface Potentials on Forces between Dissimilar Surfaces in Aqueous Solution. Advanced Materials 2011, 23 (20), 2294-2298.

[25] Valtiner, M.; Grundmeier, G., Single Molecules as Sensors for Local Molecular Adhesion Studies. Langmuir 2010, 26 (2), 815-820.

[26] Tabor, R. F.; Wu, C.; Grieser, F.; Dagastine, R. R.; Chan, D. Y. C., Measurement of the Hydrophobic Force in a Soft Matter System. Journal of Physical Chemistry Letters 2013, 4 (22), 3872-3877.

[27] Gebbie, M. A.; Valtiner, M.; Banquy, X.; Fox, E. T.; Henderson, W. A.; Israelachvili, J. N., Ionic Liquids Behave as Dilute Electrolyte Solutions. Proceedings of National Academy of Sciencies of the U. S. A. 2013, 110 (24), 9674-9679.

[28] Valtiner, M.; Ankah, G. N.; Bashir, A.; Renner, F. U., Atomic Force Microscope Imaging and Force Measurements at Electrified and Actively Corroding Interfaces: Challenges and Novel Cell Design. Review of Scientific Instruments 2011, 82 (2), 023703.

[29] Valtiner, M.; Banquy, X.; Kristiansen, K.; Greene, G. W.; Israelachvili, J. N., The Electrochemical Surface Forces Apparatus: The Effect of Surface Roughness, Electrostatic Surface Potentials, and Anodic Oxide Growth on Interaction Forces, and Friction between Dissimilar Surfaces in Aqueous Solutions. Langmuir: the ACS journal of surfaces and colloids 2012, 28 (36), 13080-13093.

[30] Donaldson, S. H., Jr.; Lee, C. T., Jr.; Chmelka, B. F.; Israelachvili, J. N., General Hydrophobic Interaction Potential for Surfactant/Lipid Bilayers from Direct Force Measurements between Light-Modulated Bilayers. Proceedings of National Academy of Sciencies of the U. S. A. 2011, 108 (38), 15699-15704.

[31] Hammer, M. U.; Anderson, T. H.; Chaimovich, A.; Shell, M. S.; Israelachvili, J., The Search for the Hydrophobic Force Law. Faraday Discussions 2010, 146, 299-308.

[32] Chaimovich, A.; Shell, M. S., Tetrahedrality and Structural Order for Hydrophobic Interactions in a Coarse-Grained Water Model. Physical Review E 2014, 89 (2) 022140.

[33] Baimpos, T.; Shrestha, B. R.; Raman, S.; Valtiner, M., Effect of Interfacial Ion Structuring on Range and Magnitude of Electric Double Layer, Hydration, and Adhesive Interactions between Mica Surfaces in 0.05-3 M Li(+) and Cs(+) Electrolyte Solutions. Langmuir 2014, 30 (15), 4322-32.

[34] Shrestha, B. R.; Baimpos, T.; Raman, S.; Valtiner, M., Angstrom-Resolved Real-Time Dissection of Electrochemically Active Noble Metal Interfaces. ACS nano 2014, 8 (6), 5979-87.

[35] Martinez-Suarez, L.; Frenzel, J.; Marx, D., Cu/Zno Nanocatalysts in Response to Environmental Conditions: Surface Morphology, Electronic Structure, Redox State and Co2 Activation. Physical chemistry chemical physics : PCCP 2014, 16 (47), 26119-26136.

[36] Behler, J., Representing Potential Energy Surfaces by High-Dimensional Neural Network Potentials. Journal of Physics-Condensed Matter 2014, 26 (18), 183001.

[37] Wiebe, J.; Spohr, E., Double Layer Effects in a Model of Proton Discharge on Charged Electrodes. Beilstein Journal of Nanotechnology 2014, 5, 973-982.

Get PDF

Download the  Initiates file downloadfull article