BM22016/10.26125/0fz8-ar47

Molecular doping for organic eletronic devices: doping concept and influence of trap Levels

Molecular doping for organic eletronic devices: doping concept and influence of trap Levels

Author(s): Christian Koerner, Max L. Tietze, Torben Menke, and Karl Leo*

Publication: Bunsenmagazin, Issue 2 2016, Aspekte, Seiten: 41 - 48

Publisher: Deutsche Bunsen-Gesellschaft für physikalische Chemie e.V., Frankfurt

Language: English

DOI: 10.26125/0fz8-ar47

 

Introduction

Organic electronics is an emerging technology that has attracted great interest in the last decades. The primary goal is not to replace existing technologies, but to create a new form of electronics which cannot be realized by standard inorganic semiconductor technologies. Important factors are the feasibility of, e.g., flexible devices, broad tunability of material properties, the possibility of low-temperature roll-to-roll processing, and the low weight of final products. The range of applications starts with organic light emitting diodes (OLED), which are already established on the display market, moving on to organic solar cells (OSC) and organic transistors (OFET), currently entering the market. The basis of all those technologies are -conjugated organic molecular or polymeric materials exhibiting semiconducting properties. In contrast to inorganic semiconductors, their transport properties are fundamentally different, particularly, charge carrier mobilities are orders of magnitude lower than in inorganic crystalline solids. The reasons are the weak intermolecular coupling due to van-der-Waals forces, a strong charge localization due to reduced screening of the charge, a broad density of states (DOS) due to the disordered nature of thin films, and further (shallow or deep) trap states due to impurities or strong morphological disorder. Additionally, the intrinsic charge carrier concentration is rather low due to the large band gap. Unwanted impurities create trap states of comparable density, such that the overall conductivity is low.

To drive high currents through OFETs or OLEDs or efficiently extract charge carriers in OSCs, doping was introduced equivalent to inorganic semiconductors.[1, 2, 3] The resulting increase in conductivity is due to an increased free charge carrier concentration and often also a higher mobility, leading to less transport losses and an Ohmic behavior at device contacts[4]. Doping was also used to realize organic tunnel diodes for a precise tuning of the breakdown voltage[5, 6] as well as for defining the threshold voltage in organic inversion and depletion transistors[ 7]. Recently, doping was used for in-depth investigations of the trap distributions by controlled trap filling such that trapped charges can respond to an electrical signal.[8, 9]

Despite the success of this concept in the last years, the doping process itself is still not fully understood. Previous works have suggested different physical mechanisms to explain, e.g., the usually observed rather low doping efficiencies.[10, 11, 12] However, as we discuss below, in many cases the concepts from inorganic semiconductors can reasonably describe the experimental observations.

Technically, the challenge remains to find suitable dopants with either deep energy levels for p-doping, or high levels for n-doping. Especially the latter leads to instability of most n-dopants against oxidation, such that synthesis and handling of those compounds must be performed under exclusion of any atmospheric contact. Therefore, new material concepts were developed in order to find air stable dopant compounds that develop their doping capability just upon processing, like molecular dimers that dissociate upon thermal evaporation.[13, 14, 15, 16]

In this paper, we review the common understanding of the doping mechanism in organic small molecule semiconductors. In particular, we summarize our recent experimental progress and advances in the description of the doping process and the doping efficiencies. Furthermore, we will highlight the importance of trap states for the doping process, how those trap states can be analyzed, and how doping can contribute to their quantitative characterization. For more in-depth information about molecular doping and its history, we refer to previous works.[2, 12, 17, 18, 19, 20]

 

Cite this: Christian Koerner, Max L. Tietze, Torben Menke, Karl Leo* (2016): Molecular doping for organic eletronic devices: doping concept and influence of trap Levels. Bunsenmagazin 2016, 2: 41-48. Frankfurt am Main: Deutsche Bunsen-Gesellschaft für physikalische Chemie e.V. DOI: 10.26125/0fz8-ar47

 

 

 

 

References

[1] M. Pfeiffer, K. Leo, X. Zhou, J. S. Huang, M. Hofmann, A. Werner und J. Blochwith-Nimoth, „Doped organic semiconductors: Physics and application in light emitting diodes,“ Organic Electronics, Nr. 4, pp. 89-103, 2003.

[2] K. Walzer, B. Maennig, M. Pfeiffer und K. Leo, „Highly Efficient Organic Devices Based on Electrically Doped Transport Layers,“ Chemical Reviews, Nr. 107, p. 1233, 2007.

[3] M. Pfeiffer, A. Beyer, T. Fritz und K. Leo, „Controlled doping of phthalocyanine layers by cosublimation with acceptor molecules: A systematic Seebeck and conductivity study,“ Applied Physics Letters, Nr. 73, pp. 3202-3204, 1998.

[4] J. Blochwith, T. Fritz, M. Pfeiffer, K. Leo, D. M. Alloway, P. A. Lee und N. R. Armstrong, „Interface electronic structure of organic semiconductors with controlled doping levels,“ Organic Electronics, Nr. 2, pp. 97-104, 2001.

[5] H. Kleemann, R. Gutierrez, F. Lindner, S. Avdoshenko, P. D. Manrique, B. Lüssem, G. Cunibert und K. Leo, „Organic Zener Diodes: Tunneling across the Gap in Organic Semiconductor Materials,“ Nano Letters, Nr. 10, p. 4929, 2010.

[6] H. Kleemann, S. A. Gutierrez, G. Cunibert, K. Leo und B. Lüssem, „Reverse breakdown behavior in organic pin-diodes comprising C60 and pentacene: Experiment and theory,“ Organic Electronics, Nr. 14, pp. 193-199, 2013.

[7] B. Lüssem, M. L. Tietze, H. Kleemann, C. Hossbach, J. W. Bartha, A. Zakhidov und K. Leo, „Doped organic transistors operating in the inversion and depletion regime,“ Nature communications, Nr. 4, p. 2775, 2013.

[8] P. Pahner, H. Kleemann, L. Burtone, M. Tietze, J. Fischer, K. Leo und B. Lüssem, „Pentacene Schottky diodes studied by impedance spectroscopy: Doping properties and trap response,“ Physical Review B, Nr. 88, p. 195205, 2013.

[9] J. Fischer, D. Ray, H. Kleemann, P. Pahner, M. Schwarze, C. Koerner, K. Vandewal und K. Leo, „Density of states determination in organic donor-acceptor blend layers enabled by molecular doping,“ Journal of Applied Physics, Nr. 117, p. 245501, 2015.

[10] M. L. Tietze, L. Burtone, M. Riede, B. Lüssem und K. Leo, „Fermi level shift and doping efficiency in p-doped small molecule organic semiconductors: A photoelectron spectroscopy and theoretical study,“ Physical Review B, Nr. 86, p. 035320, 2012.

[11] I. Salzmann, G. Heimel, S. Duhm, M. Oehzelt, P. Pingel, B. M. George, A. Schnegg, K. Lips, R.-P. Blum, A. Vollmer und N. Koch, „Intermolecular Hybridization Governs Molecular Electrical Doping,“ Physical Review Letters, Nr. 108, p. 035502, 2012.

[12] I. Salzmann und G. Heimel, „Toward a comprehensive understanding of molecular doping organic semiconductors,“ Journal of Electron Spectroscopy and Related Phenomena, Nr. 204, pp. 208-222, 2015.

[13] T. Menke, P. Wei, D. Ray, H. Kleemann, B. D. Naab, Z. Bao, K. Leo und M. Riede, „A comparison of two air-stable molecular n-dopants for C60,“ Organic Electronics, Nr. 13, pp. 3319-3325, 2012.

[14] B. D. Naab, S. Zhang, K. Vandewal, A. Salleo, S. Barlow, S. R. Marder und Z. Bao, „Effective Solution- and Vacuum-Processed n-Doping by Dimers of Benzimidazoline Radicals,“ Advanced Materials, Nr. 26, pp. 4268-4272, 2014.

[15] S. Guo, S. B. Kim, S. K. Mohapatra, Y. Qi, T. Sajoto, A. Kahn, S. R. Marder und S. Barlow, „n-Doping of Organic Electronic Materials using Air-Stable Organometallics,“ Advanced Materials, Nr. 24, pp. 699-703, 2012.

[16] S. Zhang, B. D. Naab, E. V. Jucov, S. Parkin, E. G. B. Evans, G. Millhauser, T. V. Timofeeva, C. Risko, J.-L. Brédas, Z. Bao, S. Barlow und S. R. Marder, „n-Dopants Based on Dimers of Benzimidazoline Radicals: Structures and Mechanism of Redox Reactions,“ Chemistry: A European Journal, Nr. 21, pp. 10878-10885, 2015.

[17] B. Lüssem, M. Riede und K. Leo, „Doping of organic semiconductors,“ Physica Status Solidi A, Nr. 210, p. 9, 2013.

[18] M. Tietze, Molecular Doping Processes in Organic Semiconductors investigated by Photoelectron Spectroscopy, Dissertation, Technische Universität Dresden, 2014.

[19] F. Löser, M. Tietze, B. Lüssem und J. Blochwitz-Nimoth, „Conductivity Doping,“ in s OLED Fundamentals: Materials, Devices, and Processing of Organic Light-Emitting Diodes, 1st Hrsg., D. J. Gaspar und E. Polikarpov, Hrsg., CRC Press, Taylor and Francis, 2015, pp. 189-234.

[20] S.-J. Yoo und J.-J. Kim, „Charge Transport in Electrically Doped Amorphous Organic Semiconductors,“ Macromolecular Rapid Communications, Nr. 36, pp. 984-1000, 2015.

[21] H. Kleemann, C. Schuenemann, A. A. Zakhidov, M. Riede, B. Lüssem und K. Leo, „Structural phase transition in pentacene caused by molecular doping and its effect on charge carrier mobility,“ Organic Electronics, Nr. 13, p. 58, 2012.

[22] K. Harada, A. G. Werner, M. Pfeiffer, C. J. Bloom, C. M. Elliott und K. Leo, „Organic Homojunction Diodes with a High Built-in Potential: Interpretation of the Current-Voltage Characteristics by a Generelized Einstein Relation,“ Physical Review Letters, Nr. 94, p. 036601, 2005.

[23] K. Harada, M. Riede, K. Leo, O. R. Hild und C. M. Elliott, „Pentacene homojunctions: Studies for electron and hole transport properties and related photovoltaic responses,“ Physical Review B, Nr. 77, p. 195212, 2008.

[24] S. Olthof, W. Tress, R. Meerheim, B. Lüssem und K. Leo, „Photoelectron spectroscopy study of systematically varied doping concentrations in an organic semiconductor layer using a molecular p-dopant,“ Journal of Applied Physics, Nr. 106, p. 103711, 2009.

[25] T. Glaser, S. Beck, B. Lunkenheimer, D. Donhauser, A. Köhn, M. Kröger und A. Pucci, „Infrared study of the MoO3 doping efficiency in 4,4’-bis(N-carbazolyl)-1,1’-biphenyl (CBP),“ Organic Electronics, Nr. 14, pp. 575-583, 2013.

[26] M. L. Tietze, F. Wölzl, T. Menke, A. Fischer, M. Riede, K. Leo und B. Lüssem, „Self-passivation of molecular n-type doping during air exposure using a highly efficient air-instable dopant,“ Physica Status Solidi A, Nr. 210, pp. 2188-2198, 2013.

[27] T. Menke, D. Ray, H. Kleemann, M. P. Hein, K. Leo und M. Riede, „Highly efficient p-dopants in amorphous hosts,“ Organic Electronics, Nr. 15, p. 365, 2014.

[28] L. E. Polander, P. Pahner, M. Schwarze, M. Saalfrank, C. Koerner und K. Leo, „Hole-transport material variation in fully vacuum deposited perovskite solar cells,“ APL Materials, Nr. 2, p. 081503, 2014.

[29] C. Falkenberg, K. Leo und M. Riede, „Improved photocurrent by using n-doped 2,3,8,9,14,15-hexachloro- 5,6,11,12,17,18-hexaazatrinaphthylene as optical spacer layer in p-i-n type organic solar cells,“ Journal of Applied Physics, Nr. 110, p. 124509, 2011.

[30] T. Menke, D. Ray, J. Meiss, K. Leo und M. Riede, „In-situ conductivity and Seebeck measurements of highly efficient n-dopants in fullerene C60,“ Applied Physics Letters, Nr. 100, p. 093304, 2012.

[31] S. Olthof, S. Mehraeen, S. K. Mohapatra, S. Barlow, V. Coropceanu, J.-L. Brédas, S. R. Marder und A. Kahn, „Ultralow Doping in Organic Semiconductors: Evidence of Trap Filling,“ Physical Review Letters, Nr. 109, p. 176601, 2012.

[32] S. Schubert, Y. H. Kim, T. Menke, A. Fischer, R. Timmreck, L. Müller- Meskamp und K. Leo, Solar Energy Materials & Solar Cells, Nr. 118, p. 165, 2013.

[33] M. Pfeiffer, T. Fritz, J. Blochwitz, A. Nollau, B. Plönnigs, A. Beyer und K. Leo, Advances in Solid State Physics, Nr. 39, p. 77, 1999.

[34] J. Gao, E. T. Niles und J. K. Grey, „Aggregates Promote Efficient Charge Transfer Doping of Poly(3-hexylthiophene),“ The Journal of Physical Chemistry Letters, Nr. 4, pp. 2953-2957, 2013.

[35] M. Tietze, P. Pahner, K. Schmidt, K. Leo und B. Lüssem, „Doped Organic Semiconductors: Trap-Filling, Impurity Saturation, and Reverse Regimes,“ Advanced Functional Materials, Nr. 25, p. 2701, 2015.

[36] S. M. Sze, Physics of Semiconductor Devices, 2nd edition Hrsg., New York: John Wiley and Sons, 1981.

[37] T. Menke, D. Ray, H. Kleemann, K. Leo und M. Riede, „Determining doping efficiency and mobility from conductivity and Seebeck data of n-doped C60 layers,“ Physica Status Solidi B, Nr. 252, p. 1877, 2015.

[38] M. L. Tietze, K. Leo und B. Lüssem, „Quantification of deep holetrap filling by molecular p-doping: Dependence on the host material purity,“ Organic Electronics, Nr. 14, p. 2348, 2013.

[39] T. Walter, R. Herberholz, C. Müller und H. W. Schock, Journal of Applied Physics, Nr. 80, p. 4411, 1996.

[40] J. Fischer, J. Widmer, H. Kleemann, W. Tress, C. Koerner, M. Riede, K. Vandewal und K. Leo, „A charge carrier transport model for donor-acceptor blend layers,“ Journal of Applied Physics, Nr. 117, p. 045501, 2015.

[41] A. Opitz, M. Bronner und W. Brütting, „Ambipolar charge carrier transport in mixed organic layers of phthalocyanine and fullerene,“ Journal of Applied Physics, Nr. 101, p. 063709, 2007.

[42] C. Schünemann, D. Wynands, L. Wilde, M. P. Hein, S. Pfützner, C. Elschner, K.-J. Eichhorn, K. Leo und M. Riede, „Phase separation analysis of bulk heterojunctions in small-molecule organic solar cells using zinc-phthalocyanine and C60,“ Physical Review B, Nr. 85, p. 245314, 2012.

[43] S. Pfützner, C. Mickel, J. Jankowski, M. Hein, J. Meiss, C. Schuenemann, C. Elschner, A. Levin, B. Rellinghaus, K. Leo und M. Riede, „The influence of substrate heating on morphology and layer growth in C60:ZnPc bulk heterojunction solar cells,“ Organic Electronics, Nr. 12, p. 435, 2011.

[44] T. Menke, Molecular Doping of Organic Semiconductors: A Conductivity and Seebeck Study, Dissertation, Technische Universität Dresden, 2013.

 

Get PDF

Download the  Initiates file downloadfull article