BM62017/10.26125/8jw7-tv48

Chemical imaging with near infrared fluorescent nanosensors

Chemical imaging with near infrared fluorescent nanosensors

Author(s): Florian A. Mann, Daniel Meyer, Sabrina Mischke and Sebastian Kruss

Publication: Bunsenmagazin, Issue 6 2017, Aspekte, Seiten: 228 - 237

Publisher: Deutsche Bunsen-Gesellschaft für physikalische Chemie e.V., Frankfurt

Language: English

DOI: 10.26125/8jw7-tv48

 

Introduction

Nanomaterials possess optoelectronic properties that are highly interesting both from a fundamental and technological point of view. Due to their new properties and size they can serve as tools to interface and interrogate complex chemical systems such as single cells or even multicellular organisms[1-3]. In this article we report on near infrared fluorescent nanosensors with a special focus on carbon nanotube-based sensors. This topic touches different aspects of modern physical chemistry. The near infrared region is highly interesting from a microscopy and spectroscopy point of view. Single-walled carbon nanotubes (SWCNTs) can be imagined as rolled-up graphene sheets and fluoresce in the near infrared (nIR). This rather unique property allows new fundamental investigations in this spectral range and paves the way for promising applications[4, 5].

Furthermore, understanding the mechanism of a fluorescent sensor requires fundamental insights into surface/polymer chemistry, molecular recognition, kinetics and photophysics. Due to their properties SWCNT-based sensors enable completely new approaches in sensing and imaging of complex biological systems. [...]

 

Cite this: Florian A. Mann, Daniel Meyer, Sabrina Mischke, Sebastian Kruss (2017): Chemical imaging with near infrared fluorescent nanosensors. Bunsenmagazin 2017, 6: 228-237. Frankfurt am Main: Deutsche Bunsen-Gesellschaft für physikalische Chemie e.V. DOI: 10.26125/8jw7-tv48

 

 

References

[1] S. Kruss, D. P. Salem, L. Vukovi , B. Lima, E. Vander Ende, E. S. Boyden and M. S. Strano, Proc. Natl. Acad. Sci. U. S. A. 114, 1789-1794 (2017).

[2] B. Tian, T. Cohen-Karni, Q. Qing, X. Duan, P. Xie and C. M. Lieber, Science 329, 830-834 (2010).

[3] J. Geng, K. Kim, J. Zhang, A. Escalada, R. Tunuguntla, L. R. Comolli, F. I. Allen, A. V. Shnyrova, K. R. Cho, D. Munoz, Y. M. Wang, C. P. Grigoropoulos, C. M. Ajo-Franklin, V. A. Frolov and A. Noy, Nature 514, 612-615 (2014).

[4] E. Polo and S. Kruss, Anal. Bioanal. Chem. 408, 2727-2741 (2016).

[5] S. Kruss, A. J. Hilmer, J. Zhang, N. F. Reuel, B. Mu and M. S. Strano, Adv. Drug Del. Rev. 65, 1933-1950 (2013).

[6] D. Jariwala, V. K. Sangwan, L. J. Lauhon, T. J. Marks and M. C. Hersam, Chem. Soc. Rev. 42, 2824-2860 (2013).

[7] V. Georgakilas, J. A. Perman, J. Tucek and R. Zboril, Chem. Rev. 115, 4744-4822 (2015).

[8] G. Hong, S. Diao, A. L. Antaris and H. Dai, Chem. Rev. 115, 10816-10906 (2015).

[9] Q. H. Wang, D. O. Bellisario, L. W. Drahushuk, R. M. Jain, S. Kruss, M. P. Landry, S. G. Mahajan, S. F. E. Shimizu, Z. W. Ulissi and M. S. Strano, Chem. Mater. 26, 172-183 (2014).

[10] M. J. O’Connell, S. M. Bachilo, C. B. Huffman, V. C. Moore, M. S. Strano, E. H. Haroz, K. L. Rialon, P. J. Boul, W. H. Noon, C. Kittrell, J. Ma, R. H. Hauge, R. B. Weisman and R. E. Smalley, Science 297, 593-596 (2002).

[11] O. S. Wolfbeis, Chem. Soc. Rev. 44, 4743-4768 (2015).

[12] S. M. Bachilo, M. S. Strano, C. Kittrell, R. H. Hauge, R. E. Smalley and R. B. Weisman, Science 298, 2361-2366 (2002).

[13] S. Ghosh, S. M. Bachilo and R. B. Weisman, Nat. Nanotechnol. 5, 443-450 (2010).

[14] F. Wang, G. Dukovic, L. E. Brus and T. F. Heinz, Science 308, 838-841 (2005).

[15] L. Lüer, S. Hoseinkhani, D. Polli, J. Crochet, T. Hertel and G. Lanzani, Nat. Phys. 5, 54-58 (2008).

[16] L. Cognet, D. A. Tsyboulski, J. D. R. Rocha, C. D. Doyle, J. M. Tour and R. B. Weisman, Science 316, 1465-1468 (2007).

[17] A. G. Walsh, A. N. Vamivakas, Y. Yin, S. B. Cronin, M. S. Unlu, B. B. Goldberg and A. K. Swan, Nano Lett. 7, 1485-1488 (2007).

[18] T. Hertel, S. Himmelein, T. Ackermann, D. Stich and J. Crochet, ACS Nano 4, 7161-7168 (2010).

[19] K. Rurack and M. Spieles, Anal. Chem. 83, 1232-1242 (2011).

[20] A. J. Lee, X. Wang, L. J. Carlson, J. A. Smyder, B. Loesch, X. Tu, M. Zheng and T. D. Krauss, Nano Lett. 11, 1636-1640 (2011).

[21] S. Y. Ju, W. P. Kopcha and F. Papadimitrakopoulos, Science 323, 1319-1323 (2009).

[22] S. Ghosh, S. M. Bachilo, R. A. Simonette, K. M. Beckingham and R. B. Weisman, Science 330, 1656-1659 (2010).

[23] Y. Miyauchi, M. Iwamura, S. Mouri, T. Kawazoe, M. Ohtsu and K. Matsuda, Nat. Photon. 7, 715-719 (2013).

[24] Y. M. Piao, B. Meany, L. R. Powell, N. Valley, H. Kwon, G. C. Schatz and Y. H. Wang, Nat. Chem. 5, 840-845 (2013).

[25] I. L. Medintz, H. T. Uyeda, E. R. Goldman and H. Mattoussi, Nat. Mater. 4, 435-446 (2005).

[26] K. Welsher, Z. Liu, D. Daranciang and H. Dai, Nano Lett. 8, 586-590 (2008).

[27] S. H. Yoshimura, S. Khan, S. Ohno, T. Yokogawa, K. Nishikawa, T. Hosoya, H. Maruyama, Y. Nakayama and K. Takeyasu, Bioconj. Chem. 23, 1488-1493 (2012).

[28] E. S. Hwang, C. F. Cao, S. H. Hong, H. J. Jung, C. Y. Cha, J. B. Choi, Y. J. Kim and S. Baik, Nanotechnology 17, 3442-3445 (2006).

[29] N. M. Bardhan, D. Ghosh and A. M. Belcher, Nat. Commun. 5, 4918 (2014).

[30] J. Zhang, A. A. Boghossian, P. W. Barone, A. Rwei, J. H. Kim, D. Lin, D. A. Heller, A. J. Hilmer, N. Nair, N. F. Reuel and M. S. Strano, J. Am. Chem. Soc. 133, 567-581 (2011).

[31] S. Reuter, S. C. Gupta, M. M. Chaturvedi and B. B. Aggarwal, Free Radical Biol. Med. 49, 1603-1616 (2010).

[32] M. L. Circu and T. Y. Aw, Free Radical Biol. Med. 48, 749-762 (2010).

[33] C. C. Winterbourn, Nat. Chem. Biol. 4, 278-286 (2008).

[34] H. Jin, D. A. Heller, M. Kalbacova, J. H. Kim, J. Zhang, A. A. Boghossian, N. Maheshri and M. S. Strano, Nat. Nanotechnol. 5, 302-309 (2010).

[35] N. F. Reuel, B. Grassbaugh, S. Kruss, J. Z. Mundy, C. Opel, A. O. Ogunniyi, K. Egodage, R. Wahl, B. Helk, J. Zhang, Z. I. Kalcioglu, K. Tvrdy, D. O. Bellisario, B. Mu, S. S. Blake, K. J. Van Vliet, J. C. Love, K. D. Wittrup and M. S. Strano, ACS Nano 7, 7472-7482 (2013).

[36] J. Zhang, S. Kruss, A. J. Hilmer, S. Shimizu, Z. Schmois, F. De La Cruz, P. W. Barone, N. F. Reuel, D. A. Heller and M. S. Strano, Adv. Healthcare Mater. 3, 412-423 (2014).

[37] T. G. Cha, B. A. Baker, M. D. Sauffer, J. Salgado, D. Jaroch, J. L. Rickus, D. M. Porterfield and J. H. Choi, ACS Nano 5, 4236- 4244 (2011).

[38] E. Stern, R. Wagner, F. J. Sigworth, R. Breaker, T. M. Fahmy and M. A. Reed, Nano Lett. 7, 3405-3409 (2007).

[39] A. Hirsch, Angew. Chem. Int. Ed. 41, 1853-1859 (2002).

[40] M. Prato, K. Kostarelos and A. Bianco, Acc. Chem. Res. 41, 60-68 (2008).

[41] T. Palacin, H. L. Khanh, B. Jousselme, P. Jegou, A. Filoramo, C. Ehli, D. M. Guldi and S. Campidelli, J. Am. Chem. Soc. 131, 15394-15402 (2009).

[42] A. Setaro, M. Glaeske, D. Przyrembel, T. Bisswanger, G. Gordeev, F. Maschietto, A. Faghani, B. Paulus, M. Weinelt, R. Arenal, M. Adeli, R. Haag and S. Reich, Nat. Commun. 8, 1-7 (2017).

[43] F. Jakubka, S. P. Schießl, S. Martin, J. M. Englert, F. Hauke, A. Hirsch and J. Zaumseil, ACS Macro Lett. 1, 815-819 (2012).

[44] C. Backes, F. Hauke and A. Hirsch, Phys. Status Solidi B 250, 2592-2598 (2013).

[45] A. Di Crescenzo, V. Ettorre and A. Fontana, Beilstein J. Nanotechnol. 5, 1675-1690 (2014).

[46] S. R. Vogel, M. M. Kappes, F. Hennrich and C. Richert, Chemistry (Easton) 13, 1815-1820 (2007).

[47] S. Kruss, M. P. Landry, E. Vander Ende, B. M. Lima, N. F. Reuel, J. Zhang, J. Nelson, B. Mu, A. Hilmer and M. Strano, J. Am. Chem. Soc. 136, 713-724 (2014).

[48] J. Zhang, M. P. Landry, P. W. Barone, J. H. Kim, S. Lin, Z. W. Ulissi, D. Lin, B. Mu, A. A. Boghossian, A. J. Hilmer, A. Rwei, A. C. Hinckley, S. Kruss, M. A. Shandell, N. Nair, S. Blake, F. Sen, S. Sen, R. G. Croy, D. Li, K. Yum, J. H. Ahn, H. Jin, D. A. Heller, J. M. Essigmann, D. Blankschtein and M. S. Strano, Nat. Nanotechnol. 8, 959-968 (2013).

[49] R. A. Wise, Nat. Rev. Neurosci. 5, 483-494 (2004).

[50] J. T. Robinson, M. Jorgolli, A. K. Shalek, M. H. Yoon, R. S. Gertner and H. Park, Nat. Nanotechnol. 7, 180-184 (2012).

[51] F. Mann, N. Herrmann, D. Meyer and S. Kruss, Sensors 17, 1521 (2017).

[52] G. Bisker, J. Dong, H. D. Park, N. M. Iverson, J. Ahn, J. T. Nelson, M. P. Landry, S. Kruss and M. S. Strano, Nat. Commun. 7, 10241 (2016).

[53] G. Bisker, J. Ahn, S. Kruss, Z. W. Ulissi, D. P. Salem and M. S. Strano, J. Phys. Chem. C 119, 13876-13886 (2015).

[54] D. P. Salem, M. P. Landry, G. Bisker, J. Ahn, S. Kruss and M. S. Strano, Carbon 97, 147-153 (2016).

[55] E. Polo and S. Kruss, J. Phys. Chem. C 120, 3061-3070 (2016).

[56] N. V. Kurnosov, V. S. Leontiev, A. S. Linnik, O. S. Lytvyn and V. A. Karachevtsev, Chem. Phys. 438, 23-30 (2014).

[57] A. J. Lee, X. Y. Wang, L. J. Carlson, J. A. Smyder, B. Loesch, X. M. Tu, M. Zheng and T. D. Krauss, Nano Lett. 11, 1636-1640 (2011).

[58] H. Hartleb, F. Spath and T. Hertel, ACS Nano 9, 10461-10470 (2015).

[59] D. Meyer, A. Hagemann and S. Kruss, ACS Nano 11, 4017-4027 (2017).

[60] D. T. Gillespie, Annu. Rev. Phys. Chem. 58, 35-55 (2007).

 

Get PDF

Download the  Initiates file downloadfull article