Lumineszenzdatierung braucht Low Level-Radiochemie

Lumineszenzdatierung braucht Low Level-Radiochemie

Lumineszenzdatierung braucht Low Level-Radiochemie

Author(s): Ludwig Zöller und Christoph Schmidt

Publication: Bunsenmagazin, Issue 4 2020, Aspekte, Seiten: 80-94

Publisher: Deutsche Bunsen-Gesellschaft für physikalische Chemie e.V., Frankfurt

Language: Deutsch

DOI: 10.26125/a6mh-6128

Einführung

Einige nichtleitende Festkörper senden bei Erhitzen zusätzlich zur Planck’schen Wärmestrahlung Licht aus. Dieses ‚kalte Leuchten‘, Lumineszenz genannt, setzt eine vorherige externe Energiezufuhr, z.B. durch ionisierende Strahlung, voraus. Seit etwa 60 Jahren wird die Eigenschaft von bestimmten Mineralen wie Quarzen und Feldspäten, diese Energie längerfristig zu speichern, genutzt um Gesteine und Artefakte zu datieren. Die Lumineszenzdatierung hat sich aufgrund ihres breiten Anwendungsspektrums zu einer der wichtigsten chronometrischen Verfahren in den Quartärwissenschaften und der Archäologie etabliert.

Cite this: Zöller, Ludwig, Schmidt,  (2020): Lumineszenzdatierung braucht Low Level-Radiochemie. Bunsenmagazin 2020, 4: 80-94. Frankfurt am Main: Deutsche Bunsen-Gesellschaft für physikalische Chemie e.V. DOI: 10.26125/a6mh-6128

Literaturverzeichnis

Aitken, M.J. 1985: Thermoluminescence dating. Academic Press, London.
Aitken, M.J. 1998: An Introduction to Optical Dating. Oxford University Press, Oxford New York Tokyo.
Antoine, P., Rousseau D.-D., Moine, O., Kunesch, S., Hatté C., Lang, A., Tissoux, H., Zöller, L. 2009: Rapid and cyclic aeolian deposition during the Last Glacial in European loess: A high-resolution record from Nussloch, Germany. Quaternary Science Reviews 28, 2955–2973.
Büchel G. 1993: Maars of the Westeifel, Germany. Lecture Notes in Earth Sciences 49, 1–13.
Cunningham, A.C., Murray, A.S., Armitage, S.J., Autzen, M. 2018: High-precision natural dose rate estimates through beta counting. Radiation Measurements 120, 209–214, https://doi.org/10.1016/j.radmeas.2018.04.008
Degering D. & Degering A. 2020: Change is the only constant -time-dependent dose rates in luminescence dating. Quaternary Geochronology 58, (in press), https://doi.org/10.1016/j.quageo.2020.101074
Eichhorn, L., Pirrung, M., Zolitschka, B., Büchel, G. 2017: Pleniglacial sedimentation process reconstruction on laminated lacustrine sediments from lava-dammed Paleolake Alf, West Eifel Volcanic Field (Germany). Quaternary Science Reviews 172, 83–95.
Erfurt, G., Krbetschek, M. 2003: IRSAR – A single-aliquot regenerative-dose dating protocol applied to the infrared radiofluorescence (IR-RF) of coarse-grain K-feldspar. Ancient TL 21, 35–42.
Fuchs M., Lang A. 2009: Luminescence dating of hillslope deposits—A review. Geomorphology 109, 17–26.
Guérin G., Visocekas R. 2015: Volcanic feldspars anomalous fading: Evidence for two different mechanisms. Radiation Measurements 81, 218-223.
Guérin, G., Mercier, N., Adamiec, G. 2011: Dose-rate conversion factors: update. Ancient TL 29, 5–8.
Hambach, U. 2010: Palaeoclimatic and stratigraphic implications of high resolution magnetic susceptibility logging of Würmian Loess at the Upper Palaeolithic Krems-Wachtberg site. In: Neugebauer-Maresch, C., Owen, L. (Eds.), New Aspects of the Central and Eastern European Upper Palaeolithic - Methods, Chronology, Technology and Subsistence, Wien, pp. 295-304.
Hambach, U., Zeeden, C., Hark, M., Zöller, L., 2008: Magnetic dating of an Upper Palaeolithic cultural layer bearing loess from the Krems-Wachtberg site (Lower Austria). Abhandlungen der Geologischen Bundesanstalt 62, 153-157, Wien.
Harvey, K. N., 1957: A History of Luminescence - From the Earliest Times Until 1900. Philadelphia, PA: The American Philosophical Society.
Kolb, T.R. 2017: Middle and Upper Pleistocene fl uvial terraces in an abandoned valley in Upper Franconia (Germany): Chronology and driving forces. Diss. Fak. Biologie, Chemie und Geowissenschaften Universität Bayreuth, https://epub.uni-bayreuth.de/3742/
Krbetschek, M. R., Rieser, U., Zöller, L., Heinicke, J. 1994: Radioactive disequilibria in palaeodosimetric dating of sediments. Radiation Measurements 23, 485–48.
Lomax, J., Fuchs, M., Preusser, F., Fiebig, M., 2013: Luminescence based loess chronostratigraphy of the Upper Palaeolithic site Krems-Wachtberg, Austria. Quaternary International (2012), http://dx.doi.org/10.1016/j.quaint.2012.10.037
Mejdahl, V. 1979: Thermoluminescence dating: Beta-dose attenuation in quartz grains. Archaeometry 21, 61-72.
Mertz, D. F., Löhnertz, W., Nomade, S., Pereira, A., Prelevic, D., and Renne, P. R. (2015) Temporal–spatial evolution of low-SiO2 volcanism in the Pleistocene West Eifel volcanic fi eld (West Germany) and relationship to upwelling asthenosphere. Journal of Geodynamics 88, 59–79.
Moine, O., Antoine, P., Hatté, C., Landais, A., Mathieu, J., Prud’homme, C., Rousseau, D.-D., 2017: The impact of Last Glacial climate variability in west-European loess revealed by radiocarbon dating of fossil earthworm granules. Proceedings of the National Academy of Sciences (PNAS) 114, 6209– 6214.
Nowell, D. A. G., Jones, M. C., Pyle, D. M. (2006) Episodic Quaternary volcanism in France and Germany. Journal of Quaternary Science 21, 645–675.
Prescott, J.R., Purvinskis, R.A. 1991: Zero thermoluminescence for zero age. Ancient TL 9, 19-20.
Preusser, F., Kasper, H.U. 2001: Comparison of dose rate determination using high-resolution gamma spectrometry and inductively coupled plasma-mass spectrometry. Ancient TL 19, 19-23.
Preusser, F., Degering, D., Fuchs, M., Hilgers, A., Kadereit, A., Klasen, N., Krbetschek, M., Richter, D., Spencer, J., 2008: Luminescence dating: basics, methods and applications. Eiszeitalter und Gegenwart (Quaternary Science Journal) 57, 95–149.
Richter, D., Krbetschek, M. R., 2006: A new thermoluminescence dating technique for heated fl int. Archaeometry 48, 695–705.
Richter, D., Dombrowski, H., Neumaier, S., Guibert, P., Zink, A. C. 2010: Environmental gamma dosimetry with OSL of α-Al2O3:C for in situ sediment measurements. Radiation Protection Dosimetry 141, 27–35.
Richter, D., Klinger, P., Zöller, L. 2015: Palaeodose underestimation of heated quartz in Red-TL dating of volcanic contexts. Geochronometria 42, 182-188.
Richter, D., Grün, R., Joannes-Boyau, R., Steele, T.E., Amani, F., Rué M., Fernandes P., Raynal, J.-P., Geraads, D., Ben-Ncer, A., Hublin, J.-J., McPherron, S.P. 2017: The age of the hominin fossils from Jebel Irhoud, Morocco, and the origins of the Middle Stone Age. Nature 546, 293–296, doi:10.1038/nature22335
Rieser, U., Krbetschek, M.R., Stolz, W. 1994: CCD-Camera based High Sensitivity TL/OSL-Spectrometer. Radiation Measurements 23, 523-528.
Rink, W.J., Thompson, J.W. (eds), 2015: Encyclopedia of Scientifi c Dating Methods. Springer (Dordrecht).
Rousseau, D.-D., Boers, N., Sima, A., Svensson, A., Bigler, M., Lagroix, F., Taylor, S., Antoine, P. 2017: (MIS3 & 2) millennial oscillations in Greenland dust and Eurasian aeolian records: a paleosol perspective, Quaternary Science Reviews 169, 99–113, https://doi.org/10.1016/j.quascirev.2017.05.020.
Schmidt, C. 2013: Luminescence dating of heated silex – Potential to improve accuracy and precision and application to Paleolithic sites. Diss. Math.-Nat. Fak. Univ. Köln.
Schmidt, C., Woda C. 2019: Quartz thermoluminescence spectra in the high dose range. Physics and Chemistry of Minerals, https://doi.org/10.1007/s00269-019-01046-w
Schmidt, C., Zöller, L. 2016: Kaltes Leuchten von Mineralen – Lumineszenzdatierung als Schlüssel zur Vergangenheit. Chem. Unserer Zeit 50, 188–197.
Schmidt, C., Schaarschmidt, M., Kolb, T., Büchel, G., Richter, D., Zöller, L. 2017a: Luminescence dating of Late Pleistocene eruptions in the Eifel Volcanic Field, Germany. Journal of Quaternary Science 32(5): 628–638.
Schmidt, C, Simmank, O., Kreutzer, S. 2019: Time-resolved optically stimulated luminescence of quartz in the nanosecond time domain. Journal of Luminescence 213, 376-387, https://doi.org/10.1016/j.jlumin.2019.05.042
Schmidt, C., Tchouankoue, J. P., Nemzoue, P. N. N., Ayaba, F., Nformidah-Ndah, S. S., Chifu, E. N. 2017b: New thermoluminescence age estimates for the Nyos maar eruption (Cameroon Volcanic Line). PLoS ONE 12(5): e0178545.
Tudyka, K., Miłosz, S., Adamiec, G., Bluszcz, A., Poręba, G., Paszkowski, Ł., Kolarczyk, A. 2018: μDose: a compact system for environmental radioactivity and dose rate measurement. Radiation Measurements 118, 8-13, doi: doi.org/10.1016/j.radmeas.2018.07.016
Wagner, G. A. 1995: Altersbestimmung von jungen Gesteinen und Artefakten. Stuttgart (Enke).
Wagner, G. A., Krbetschek, M., Degering, D., Bahain, J.-J., Shao, Q., Falguères, C., Voinchet, P., Dolo, J.-H., Garcia, T., Rightmire, G. P., 2010: Radiometric dating of the type-site for Homo heidelbergensis at Mauer, Germany. Proceedings of the National Academy of Sciences (PNAS) 107, 19726–19730.
Wintle, A. G., 1973: Anomalous fading of thermoluminescence in mineral samples. Nature 245, 143– 144.
Zeeden, C., Dietze, M, Kreutzer, S. 2018: Discriminating luminescence age uncertainty composition for a robust Bayesian modelling. Quaternary Geochronology 43, 30-39, http://dx.doi.org/10.1016/j.quageo.2017.10.001
Zöller, L. (Hrsg.) 2017: Die Physische Geographie Deutschlands. Darmstadt (WBG).
Zöller, L., Wagner, G.A. 2015: Luminescence Dating, History. In: Rink, W.J., Thompson, J.W. (eds), 2015: Encyclopedia of Scientifi c Dating Methods, 417-422, Springer (Dordrecht).
Zöller, L., Blanchard, H., McCammon, C. 2009: Can temperature assisted hydrostatic pressure reset the ambient TL of rocks? – A note on the TL of partially heated country rock from volcanic eruptions. Ancient TL 27, 15-22.
Zöller, L., Richter, D., Blanchard, H., Einwögerer, T., Händel, M., Neugebauer-Maresch, C. 2014: Our oldest children: Age constraints for the Krems-Wachtberg site obtained from various thermoluminescence dating approaches. Quaternary International 351 , 83-87, http://dx.doi.org/10.1016/j.quaint.2013.05.003
Zöller, L., Pernicka, E. 1989: A note on overcounting in alpha-counters and its elimination. Ancient TL, 7:11-14.