PHYSICAL CHEMISTRY OF SURFACES

AND INTERFACES

Sabine Wenzel, Zilin Ruan, Michael Gottfried

BUNSEN-MAGAZIN - 27. JAHRGANG - 6/2025

Imaging and manipulation of molecules on
surfaces with scanning probe methods

Introduction

Since the invention of scanning tunneling microscopy (STM) [1]
in 1982 and the subsequent development of atomic force mi-
croscopy (AFM) [2], scanning probe techniques have become
essential tools across condensed matter physics and surface
science. These techniques enable atomically resolved imag-
ing and spectroscopy that have advanced our understanding
of quantum phenomena and provide quantitative insight into
the chemical and structural properties of molecules and ma-
terials on surfaces. Studies range from characterizing surfac-
es and adsorbed molecules of fundamental interest [3, 4] to
clarifying the composition of real-world systems like the solid
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Fig. 1: Scanning probe microscopy (SPM) investigation of the heterocycloarene C,,,N¢H;, on a Au(111) surface.
a) Constant-current STM, b) bond-resolved STM, c) bond-resolved AFM, d) constant-current AFM, e) differential
conductance maps related to the density of states of HOMO and LUMO of the molecule, and f) corresponding sim-

ulations of the conductance maps. The scale bars indicate a length of 0.5 nm.

components of petroleum [5], soot formation [6], and organ-
ic compounds found in meteorites [7]. Recent developments
open up perspectives for rapid molecular prototyping and the
construction of artificial quantum systems.
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Electronic structure in STM

In conventional constant-current STM images, molecules appear
with well-defined shape, as illustrated for the hexagonal hetero-
cycloarene C,,,NgHs, in Figure 1a. While it is tempting to interpret
these images as direct pictures of molecular geometry, the im-
age contrast is determined not only by the atomic positions but,
more fundamentally, by the electronic structure of the sample.
This becomes clear in the framework of the Tersoff-Hamann
model, which assumes a tip wave function of s-wave symmetry.
Within this approximation, the tunneling current |, is proportional
to the local density of states (LDOS) of the sample, integrated
over the energy range between the Fermi level ES. and the bi-
as-shifted energy E'. (Figure 2b).
Thus, an STM topograph is an en-
ergy-integrated map of the LDOS,
rather than a simple “height pro-
file”. By varying the applied bias
voltage V.., the contribution of
different electronic states can
be selected. Measuring the dif-
ferential conductance (dl/dV) as
a function of V,,, yields scanning
tunneling spectra that reflect the
LDOS at the probed site. When
V. iS tuned to the energy of a
particular molecular orbital, con-
stant-current dl/dV images (com-
monly called “orbital images”)
show how the LDOS associated
with that orbital is distributed in
space. Figure 1e shows such im-
ages for the HOMO and LUMO of
the cycloarene.

Tip functionalization

The exceptional mechanical stability of low-temperature STM
enables deliberate tip functionalization with small molecules, a
now-established method to enhance both spatial resolution in im-
ages and energy resolution in tunneling spectra. The most widely
used case is termination with carbon monoxide (CO): the p-like
frontier orbitals of the CO modify the tunneling matrix elements,
making the STM signal sensitive to lateral variations of the local
density of states [8]. This additional sensitivity explains the sub-
molecular contrast of CO-tip images. Corresponding simulations
that include this derivative-like effect (see Figure 1f) reproduce
the experimentally observed orbital images with high accuracy.
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Fig. 2: Technical aspects of scanning probe microscopy. a) Experimental setup with qPlus tuning fork sensor. b) Electronic structure imaging in STM. Visualizations
of c¢) the frequency modulation AFM mode, d) the constant-current AFM mode, and e) the interaction of a CO-functionalized tip with an atom on the surface.

Geometric structure

At small tip-sample distances, a CO-functionalized tip can be
deflected by lateral forces and bend away from the surface, as
illustrated in Figure 2e. According to the probe-particle model
[9], this mechanical response leads to a geometric-type contrast
with exceptionally high spatial resolution. In constant-height
mode, the resulting “bond-resolved” STM clearly reveals intra-
molecular features: as shown in Figure 1b, even the individual
benzene rings within the cycloarene are clearly resolved.

Non-contact AFM

Low-temperature operation with a functionalized tip on a tun-
ing-fork gPlus sensor [10] (Figure 2a) enables bond-resolved
AFM imaging (Figure 1c). Unlike conventional microcantile-
vers, this rigid quartz tuning fork combines a high resonance
frequency with small oscillation amplitudes, making it ideally
suited for frequency modulation AFM (Figure 2c). Its piezoe-
lectric properties allow self-sensing, eliminating the need for
laser readout and thus permitting operation in compact micro-
scopes without optical access. AFM signal and tunneling cur-
rent can be recorded simultaneously, allowing for combined
access to geometric and electronic structure. This also enables
other scanning modes like constant-current or constant-dl/dV
AFM modes (Figures 2d, 1d), which further enhance bond-re-
solved imaging, especially for nonplanar molecules.
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Fig. 3: Synthesis by single-molecule manipulation [3]. a) STM image and b)
chemical structure of a molecular precursor that was prepared in solution and
vapor deposited onto a Au(111) surface. c) Chemical structure, d) bond-re-
solved STM image, and e) AFM image of the pentadecacene prepared by mul-
tistep STM-tip manipulation. The scale bars indicate a length of 0.5 nm. Mod-
ified from J. Am. Chem. Soc. 2025, 147, 6, 4862-4870, under the Creative
Commons CC BY 4.0 license.
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Molecular synthesis by tip manipulation

Controlled manipulation in scanning probe microscopes has re-
cently become a powerful tool for atomically precise molecular
synthesis. The tip can be used to move adsorbate molecules di-
rectly or to induce site-specific reactions by applying short bias
pulses that break (or form) selected bonds. Figure 3 visualizes
such a tip-enabled synthesis of a long acene molecule, which
is inaccessible by solution synthesis due to its open-shell poly-
radical character. Here, targeted bias pulses remove protecting
groups from the molecular precursor, enabling full conjugation
in the m-electron system. These and other recently synthesized
molecules like cyclocarbons [4] are of fundamental interest
and represent early steps toward the atomically-precise bot-
tom-up fabrication that was envisioned by Richard Feynman in
1959 [11]. Surfaces serve as ideal platform to investigate the
geometric, (opto-)electronic, and magnetic properties of single
molecules synthesized by tip manipulation and thereby also
benchmark their suitability for applications.

Beyond Feynman’s dream

The recent advances toward bottom-up manufacturing let us
envision fast molecular prototyping. The aid of artificial intelli-
gence-based automation of tip preparation and scanning probe
methods [12], identification of molecules [13], and prediction
of molecular properties [14], promises to accelerate progress
well beyond the vision first outlined by Feynman.
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QUOTES

"Science doesn't always go forwards. It's a bit like doing
a Rubik's cube. You sometimes have to make more of
a mess with a Rubik's cube before you can get it to
go right. You build up this picture of what there is and
you believe it to be true and you work with this picture
and you refine it but sometimes you have to abandon
the picture. Sometimes you discover the picture you
thought you had, that everybody thought we had, actu-
ally turns out to be wrong.*

Jocelyn Bell Burnell (radio astronomer)
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