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Theoretical electrochemistry 2: 

Modelling the electrochemical double layer

Electrochemical energy conversion and storage have become 

critical components within the energy transition towards a more 

sustainable future of our society [1]. Devices such as electrocat-

alysts, fuel cells and batteries play a central role in this transition. 

All these devices are characterized by the fact that processes at 

electrochemical interfaces are crucial in their operation which 

has caused a renewed interest in the study of these interfaces.

Interfacial electrochemistry is concerned with structures and 

processes at the interface between an electron conductor, the 

electrode, and an ion conductor, the electrolyte [2]. At such an 

interface between two conducting phases, a so-called electro-

chemical or electric double layer (EDL) forms. Note that the 

EDL as a whole has to be charge neutral in equilibrium, be-

cause if it was not, electrostatic forces would act on all charge 

carriers in the electrode and the electrolyte leading to a charge 

-

ists outside the EDL.

Interestingly enough, our understanding of the structure of 

these interfaces is based on concepts that have been estab-

lished more than one hundred years ago [3–6], and it is fair to 

say that most of our current understanding of electrochemical 

interfaces is still based on these concepts [7]. This traditional 

realize that ions in the electrolyte will be attracted by charges in 

the electrode (see Fig. 1a), leading to a linear drop of the elec-

trostatic potential within the Helmholtz layer. In contrast, Gouy 

[4] and Chapman [5] assumed a diffuse thermal distribution of 

the ions given by the Boltzmann distribution [2]. Since neither 

of the two models could explain all experimental observations, 

Stern combined both of them [6] resulting in a combination of 

linearly and exponentially decreasing electrostatic potentials 

within the double layer region, as illustrated in Fig. 1b.

There are limitations of the Stern model. The ions are considered 

to be point charges, the electrode is treated as a perfect conduc-

tor, and the explicit presence of the solvent molecules is treated 

on a continuum level. Still, the Stern model is often used as the 

basis for the discussion of the structure of the EDL [8–10]. It 

is interesting to note that our discussion of the structure of the 
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EDL, as already mentioned, is still based on a model that is more 

than one hundred years old. This strongly suggests that this tra-

ditional model appears to capture the essence of the structure 

of the EDL. On the other hand, it is also known that the classical 

-

tively simple electrochemical interfaces [9].

The determination of the atomistic structure of the EDL is hin-

dered by the fact that it typically corresponds to an electro-

chemical solid-liquid interface which means that the ions in 

the electrolyte are rather mobile and statistically distributed so 

that experimentally it is hard to resolve their positions. Howev-

er, with respect to the atomistic modelling of electrochemical 

interfaces between an electrode and a liquid electrolyte, in re-

extent due to the improvement in computer power, but also 

caused by conceptual progress and the development of suita-

ble theoretical and computational tools.

It has now become possible to perform ab initio molecular dy-

namics (AIMD) simulations of electrode-electrolyte interfaces for 

reasonable system sizes and run times in order to derive mean-

ingful statistical distributions. In Fig. 2, a snapshot is shown of 

an AIMD simulation of six-layers of water on a Pt(111) electrode 

in a (6×6) unit cell comprising 144 water molecules [12] under 

the conditions of the potential of zero charge [13], i.e., for an 

a snapshot of the simulation in the lower panel, the averaged 

electrostatic potentials of the metal-vacuum and the metal-water 

interface (upper panel) and the change of this potential caused 

There are in fact some distinct differences compared to the 

schematic models of the EDL presented in Fig. 1. For exam-
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physics can also be viewed as an electrochemical interface [15]. 

They are in fact also characterized by the formation of space-

charge layers. These space-charge layers cause a potential drop 

across the interface. However, in semiconductor physics it is 

well accepted why these space-charge layers and the associat-

ed potential drop form: their presence aligns the Fermi levels of 

the p-type and n-type materials so that a constant Fermi level 

throughout the device results. It appears to be obvious that the 

same driving force should also be operative in the formation of 

EDLs at electrochemical interfaces in equilibrium, namely to align 

the chemical potentials of the electrons in the electrode and the 

electrolyte. Hence there is certainly still room for advancements 

in the conceptual understanding of electrochemical interfaces 

which could also reduce some of the confusion associated with 

the description of potentials in electrochemistry [16].
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 electrostatic potential in the Pt(111) electrode up to the third 

layer, demonstrating that the assumption of an ideal metal is 

not fully adequate. Furthermore, there is an oscillatory struc-

atomically layered structure of the aqueous electrolyte close 

to the electrode. From the second layer on, the electrostatic 

-

er than the one associated with the overall potential drop from 

the metal electrode to the bulk water region.

In addition, an analysis of the charge distribution at the inter-

charge transfer has in fact also been observed for ice-like wa-

ter layers on close-packed metal surfaces [14], independent of 

the orientation of the ice-like layers. Hence also at the potential 

metal-water interfaces. These observations call for a revision 

of our classical models of the electric double layer.

Interestingly enough, in the electrochemical community it is hard-

ly explained why the EDL forms, i.e., the question of the driving 

stated that an electric double layer forms whenever two conduct-

-

nations such as that the formation of excess positive or negative 

charges on solid surfaces upon contact with aqueous solutions 

gives rise to an electrical double layer as ions in the adjacent 

electrolyte rearrange to screen the charge [8]. First of all, this 

does not answer the question why charges form upon contact 

with the adjacent electrolyte. Second, this appears to be in con-

a double layer evolves associated with the separation of charges.

which are also concerned with interfaces. For example, a p–n 

junction or a metal-semiconductor contact in semiconductor 

Fig. 2:
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Spotlight on

Hot electrochemistry: Ceramics and solid ion conductors

In most electrochemical systems for energy conversion and stor-

age as well as for synthetic processes, liquid electrolytes (solu-

tions) provide the ionically conducting pathway between the elec-

trodes. This applies even to technical processes in the electrolytic 

industry like production of aluminium or alkali metals. In elec-

trochemical energy technology (EET), the numerous advantages 

of ionically conducting liquids like being cheap, readily available, 

highly conducting and having an ample supply are burdened with 

solutions a further aspect is added: Flammability. These safety 

concerns have provided an additional driving force in the search 

for solid electrolytes. They may be safer in these regards, but they 

come with their own burden: Many of them show rather poor ionic 

conductivities at common temperatures of their desired applica-

tion. A lot of research is dedicated to help by changing chemical 

composition and structure. An even more simple solution: Higher 

operating temperature. Perhaps not a universal one, but in many 

applications a realistic one: High temperature fuel cells running 

-

taining traces of impurities deadly for many catalysts at room 

temperature) and water splitting on our way to green hydrogen, 

both with oxygen ion-conducting solid electrolytes. Both subjects 

are prominent in the research of the Ceramic Energy Converters 

group at the Fraunhofer-Institut für Keramische Technologien und 

Systeme IKTS in Dresden. Studies ranging from fundamental in-

vestigations of materials towards processing them into compo-

nents and devices [1, 2] are among the many research activities 

dealing with the numerous facets of ceramics going all the way 

to e.g. EET. Some of the studied materials hold promise also at 

ambient temperatures in e.g. solid-state sodium batteries [3]. In 

an all-solid zero-excess sodium cell with a NASICON solid electro-

lyte, a copper current collector providing the negative electrode 

(where sodium is deposited during charging) was combined with 

an all-sodium counter electrode (instead of a storage material in 

a real cell) in a study to establish best surface properties of the 

NASICON for stable adherence of the copper current collector as 

well as the despoited sodium layer in the charged state.
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