
57

DEUTSCHE BUNSEN-GESELLSCHAFT

Zurück zum Inhaltsverzeichnis

THEORY MEETS EXPERIMENT

Prof. Dr. Matthias Arenz

Department of Chemistry,  

Biochemistry and Pharmaceutical Sciences

University of Bern, Switzerland

Freiestrasse 3, 3012 Bern

matthias.arenz@unibe.ch

https://arenz.dcb.unibe.ch/start.shtml

Prof. Dr. Jan Rossmeisl

Department of Chemistry

University of Copenhagen

Universitesparken 5, 2100 Copenhagen, Denmark

jan.rossmeisl@chem.ku.dk

https://chem.ku.dk/research_sections/nanochem/theoretical-electroca-

talysis/

DOI-Nr.: 10.26125/90yd-9c27

Electrocatalysis plays a pivotal role in the energy transition. 

-

pends on the “activity” of the electrocatalyst. Equally impor-

tant are its electrochemical stability as well as the abundance 

and affordability of the catalyst material. Achieving a combi-

nation of all these properties in a single catalyst material has 

been a persistent challenge. This material limitation has driven 

interest in exploring catalytic applications of alloys and more 

recently high-entropy alloys (HEAs) – materials composed of 

-

nally [1], [2]. First applied for optimizing mechanical properties 

in materials science [3], HEAs – or more general high-entro-

py materials (HEMs) – have now also emerged as a promising 

platform for discovering novel electrocatalysts with unique, 

tunable properties [4]. 

In the following, we discuss an approach that leverages their 

compositional complexity and the ability to “down-project” the 

material search to less complex compositions [5]. This ap-

proach demonstrates how HEMs offer an exciting opportunity 

to bridge the gap between theoretical predictions and experi-

mental validation, accelerating the development of next-gen-

eration energy solutions. The description focuses on our own 

work as well as collaborative efforts and is not meant as a re-

view but rather a personal perspective.

The most established method for comparing “Theory” and 

“Experiment” in electrocatalysis is the surface science ap-

proach [6]. Experimentalists work with electrocatalysts that 

as single-crystal electrodes [7]. However, such experiments of-

ten require elaborate preparation of the catalysts and detailed 

characterization of their surfaces. In contrast, the predominant 

“Theory” approach employing density functional theory (DFT) 

structure and employing activity descriptors – such as the OH 

binding energy on this surface – to predict catalytic activity 

[8]. This theoretical approach has proven highly effective in 

describing known electrocatalysts and providing fundamen-

tal insights that enhance chemical intuition in the search for 

improved catalyst materials [9]. In selected cases, it has also 

shown predictive power in identifying better catalyst materi-

als [10]. Nevertheless, this method predominantly focuses on 

catalysts are typically far more complex in structure and com-

position. A notable example from heterogeneous catalysis is 

ammonia synthesis, where the theoretical understanding sub-

stantially lagged behind its commercial application [11]. Addi-

tionally, comparisons between “Theory” and “Experiment” are 

often restricted to a limited number of materials. For instance, 

the Sabatier principle, which underpins volcano relationships 

in activity, is typically represented using a small dataset of 

measurements from different laboratories. Despite the possi-

bility to normalize the data to the performance of benchmark 

materials, e.g., pure Pt [12], the logarithmic plots used in these 

trend, which may result from limitations in the theoretical mod-

el or inconsistencies in experimental data across laboratories.

HEMs enable a substantial advancement of this strategy by 

combining the descriptor approach with machine learning tech-

niques. In a recent work by Pedersen et al. [13] it has been 

shown that by combining Bayesian optimization with the de-

scriptor approach in DFT calculations one can establish a cor-

relation between the composition of a material and its catalytic 

performance towards the ORR. This “theoretical model” can be 

used to establish heat maps of the composition–activity rela-

tionship exhibiting areas of interest, which can be scrutinized 

further and constitute the prediction for the most active catalyst 

Interestingly, the “theoretical models” exhibited a  relatively 

smooth landscape, and hence a relatively small number of dif-

of the activity optima. Keeping in mind the large number of 

possible compositions if for example a grid with 5 at. % differ-

ence between the compositions is constructed, i.e., > 10 000, 

this was a surprising result. As a consequence, the “theoretical 

model” allows for an “experimental validation” either by high 

discussed case or by medium throughput screening of nano-

particle-based catalysts as demonstrated by Mints et al. [15]. 

The establishment of “theoretical models” for the composition–

Matthias Arenz, Jan Rossmeisl

Electrocatalysis: High-entropy alloys as a 

bridge between theory and experiment



58

BUNSEN-MAGAZIN · 27. JAHRGANG · 2/2025

Zurück zum Inhaltsverzeichnis

THEORY MEETS EXPERIMENT

activity relationship since then has been substantially acceler-

ated by using extrapolations of the DFT calculations with the 

help of machine learning allowing the search for activity optima 

in higher dimensional (number of different metals) composition 

spaces [16]. For estimating DFT adsorption energies on HEA, 

surface machine learning algorithms are many orders of magni-

tude faster than DFT, which allows for studies that would have 

been impossible just a few years ago. 

Also, the establishment of “experimental models” for the com-

-

ments. It has been shown that with the help of Bayesian op-

timization, a loop consisting of catalyst synthesis – physical 

characterization – catalytic activity determination and the 

suggestion of new catalyst compositions to be synthesized and 

tested can be created [15]. The approach has been success-

fully applied for metallic electrocatalysts [15] as well as for ox-

ides [17]. In the Bayesian optimization thereby one can weigh 

between the exploration of uncharted territories in the com-

position space and exploitation of compositions with expected 

high catalytic activity. Similar to the computational studies, rel-

atively few (< 100) cycles were required for establishing opti-

mal compositions. However, in the example by Mints et al. [15] 

we also realized that when focusing too much on exploitation 

trends or to construct an “experimental model” or to assess its 

predictive power, respectively. Hence a compromise between a 

full grid search and a search focused on exploitation needs to 

be found. Furthermore, procedures for establishing the quali-

ty of model establishing the composition–activity relationship 

becomes of prime interest. For this, cross validations such as 

leave one out cross validation (LOOCV) constitute a powerful 

tool. Also SHapely Additive exPlanations (SHAP) analyses have 

been proven useful to analyze the “importance” of the respec-

tive metal components in the HEM [15], [17]. For example, for 

HEM NPs containing Ru as well as Ir it could be observed that 

the “order of importance” changes from Ru at lower overpoten-

tials to Ir at higher overpotentials, see Figure 2; a phenomenon 

that was interpreted as a consequence of the low electrochem-

ical stability of RuOx [17].

Despite a steep learning curve, there is plenty of room for ad-

vancing the experimental approach practiced in our group. For 

example, it needs to be carefully analyzed how to optimize the 

duration of the experiments to obtain enough data points in a 

reasonable time. Performing single optimization loops of cat-

Fig. 1:
composition space for identifying the most active electrocatalyst based on 
DFT calculations. Figure taken from reference [13]; Copyright by the authors 

Fig. 2: SHapely Additive exPlana-
tions (SHAP) values for each of the 
elements in HEM nanoparticles ex-

(c) 1.55 V vs RHE. A positive SHAP 
value indicates a positive contri-

of the points indicates the atomic 

shown in the color bar on the right. 
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alyst synthesis – physical characterization – catalytic activity 

determination, i.e., synthesizing, characterizing, and measur-

ing only one catalyst composition at a time before suggesting 

required to perform the experiments. Synthesizing a batch of 

Bayesian batch optimization should be pursued. Also the opti-

mum number of experimental repeats of the same composition 

is currently unclear but when building an “experimental model” 

-

tant. Several experimental considerations must be taken into 

account as performing several dozens of experimental optimi-

zation loops of high quality requires considerable time. 

Despite the “infancy” of the presented approach to electroca-

talysis, its impact and potential have already become apparent. 

This data-driven approach offers the opportunity of comparing 

“Theory” and “Experiment” based on multiple data points from 

a single experimental study. This is a crucial point as the de-

scriptor approach is most powerful to describe trends in activity 

but not necessarily capable of delivering absolute activities or 

-

surface compositions and certain hypotheses, e.g., the activi-

ty descriptors. By comparison, the “Experimental Model” does 

not require any hypothesis and can be operated as a black-box 

model. Although it needs the composition of the catalyst as an 

input, it is important to note that the exact surface composition 

-

cult, if not impossible, to determine; in particular in a medium- 

or high-throughput approach. However, the composition of the 

metal precursors in the synthesis and / or the bulk composition 

of the as prepared electrocatalyst can be determined with a 

reasonable effort. With the bulk compositions as input compar-

ing “Theory Model” and “Experiment Model”, it may become 

feasible to retrieve indirect insights on the “real surface” state 

of the electrocatalyst under operation conditions. This would be 

an extremely important information for catalysis. Known phe-

nomena such as metal leaching upon contact to acidic condi-

tions might be accessible in much more detail. Furthermore, by 

improving medium and high throughput structural characteriza-

tion tools (in particular towards data analysis) additional factors 

such as structure, segregation effects etc. might be accessible 

in this approach in the future. Last but not least, we expect that 

the approach can be advanced to multi-objective optimization 

combining aspects of electrocatalyst activity, electrochemical 

stability, material abundance and price in an analysis of the 

best suitable material for a certain experimental condition. 
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