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The optical microscope is a natural choice for observing life 

on the micro-scale, enabling non-destructive investigation of 

cells, tissue and microorganisms, often in conditions that re-

semble their natural environments. Indeed, optical microscopy 

imaging is common in microscopy, because it enables imag-

translates to seeing only the structures/proteins of interest. 

However, optical microscopy comes with a fundamental limi-

tation: due to the wave nature of light propagation, the best 

achievable resolution of an image-forming optical microscope 

is somewhat better than half the wavelength of the light; fea-

tures smaller than ~200-300 nm cannot be resolved. 

Technological developments in recent decades, relying on an 

element of optical and/or chemical innovation, always com-

bined with an appropriate computational algorithm, have been 

tremendously successful in surpassing this resolution limit. 

Notable techniques include Stimulated Emission Depletion 

(STED [1]), Structured Illumination Microscopy (SIM [2]), Single 

Molecule Localization Microscopy (SMLM [3], [4]), and related 

microscopy was acknowledged by the 2014 Nobel Prize in 

Chemistry awarded to Eric Betzig, Stefan Hell and W.E. Moern-

er, and using such approaches, resolution improvement by a 

factor of 10 and more is nowadays attainable in microscopes 

at research labs and by commercially available instruments. 

that is appealingly simple, in terms of instrumentation require-

ments, requiring only a standard high-NA microscope and a 

computer. It works by capturing a sequence of standard (diffrac-

each point in time, only a small subset of the typically millions 

of molecules labeling the sample are emitting light, via one of 

various mechanisms [3], [4], [5], [6]. The end result is a movie, 

typically consisting of thousands of frames, containing random 

spots (Fig. 1a). Then, to obtain super-resolution, each spot is 

localized, i.e., its x-y position is found algorithmically, which can 

be done at very high precision (tens of nm), assuming each spot 

originates from a single molecule. This list of localizations can 

then be rendered into a single super-resolution image (Fig. 1b). 

An extension of SMLM to 3D is particularly of interest for ob-

-

croscope, which is less than 1 µm. One of the ways to extend 

SMLM to 3D is to use point-spread-function engineering – a 

an additional optical element, namely, a phase mask, that 

changes the shape that a point source (e.g. a single mole-

cule) generates on the camera, known as the point-spread-

function (PSF). A molecule no longer appears as a single spot 

that becomes blurry upon defocus, like in a standard micro-

-

codes its depth, which can then be recovered algorithmically 

(Fig. 2a, b) [7], [8]. 

During the last decade, deep learning has been revolutioniz-

ing signal and image processing, and microscopy is no excep-

of supervised deep learning methods to learn image recon-

struction directly from optically encoded data relieves much of 

the effort that would traditionally be required for image decod-

ing. In other words, the microscope designer needs to worry 

now mostly about injecting enough information in the image, 

i.e., encoding, rather than how that image will be decoded into 

the information of interest; in many cases, a neural net will 

take care of it. 

Our group has been applying deep-learning to a variety of algo-

rithmic challenges in SMLM and related topics. Notable recent 

examples include: 
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Fig. 1: Single molecule localization microscopy. a) The position of a single 

limit. b) Image formation in SMLM works by repeatedly determining the posi-
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cules, enabling faster image acquisition for SMLM [10]. This 

is done by training a neural net to recover high-resolution 

images, given low-resolution images comprising of random-

ly positioned emitters, either simulated or experimentally 

measured (Fig. 2c).

• Generating a super-resolution video, rather than a single im-

age, directly from a blinking video, enabling live-cell super-res-

olution microscopy. This approach for x-y-t interpolation, 

termed DBlink [11], is implemented by relying on long-time 

correlations between frames, and training a recurrent neural 

network on relatively simple simulated localization maps. 

• Localizing dense molecules in 3D in a PSF-engineered micro-

scope, trained on simulated images of molecules in 3D, using 

an experimentally-calibrated image-formation model [12] (Fig. 

-

mal encoding, i.e., the optimal phase mask pattern for dense 

3D SMLM, which is the spiral mask shown in Fig. 2b (row 3), 

resembling a hummus plate. Additionally, in extremely dense 

cases, it is worthwhile to split the imaging path into two paral-

lel channels, each encoded by its own phase mask, which can 

be jointly learned with the help of a neural net [13].

• Determining the diffusion type of single particles directly 

from their trajectories, using a neural net [14].

• Finding optimal spectrally-encoding phase masks for single 

emitter position + color estimation [15].

The techniques we develop are intended for use by a wide 

range of scientists. Therefore, an important concern is to lower 

the technical barrier for adoption. In the context of computa-

tional microscopy there are two main aspects to this hurdle: 

software, and hardware. On the software side – all algorithms 

we develop are published online, and we make an effort to 

make them user-friendly and accessible, e.g. by sharing them 

on platforms dedicated for this purpose [18], [19]. On the hard-

ware front – one of the key barriers for adopting PSF engineer-

ing is the phase mask, which is a piece of dielectric material 

that normally requires sub-wavelength fabrication precision, 

which is expensive and cumbersome to achieve. To overcome 

this hurdle, we have developed a method to fabricate phase 

masks based on 3D printing combined with near-index match-

ing, leading to fast and simple fabrication of phase masks with 

optical properties comparable to state-of-the-art masks, and in 

some cases even better-performing [20], [21].

Neural networks are likely to continue to play an important 

role in SMLM, both in image processing and in computation-

al-imaging system design. New trends in neural networks are 

examples from our group being transformer-encoders for direct 

image to DNA sequence mapping [22] and diffusion models for 

realistic super-resolution image generation for various purpos-

es [23]. As neural nets are often used as “black boxes” with 

sometimes unpredictable behavior, extra care should be taken 

for their validation and performance evaluation in SMLM [24]. 

Ultimately, time will tell which neural network-based methods 

become the new state of the art.

Fig. 2: Point-Spread Function (PSF) engineering and deep-learning based reconstruction. a) A microscope with an additional 4-F system with a phase mask in 
b) -

c) 2D SMLM data 
d)
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