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Surfaces, interfaces, and microstructure of semiconductors can 

act as source of defect states, accumulate dopants and locally 

change the electronic structure and are thus affecting the charge 

carrier behavior in semiconductor-based (opto)electronic devic-

es. In my group at the Leibniz Institute of Polymer Research Dres-

den e.V., we are aiming at investigating the impact of surfaces, 

interfaces and microstructure on charge carrier behavior on the 

nanoscale by establishing a combination of advanced electrical 

and electromechanical scanning probe microscopy (SPM) tech-

niques with optical microscopy or spectroscopy and macroscopic 

semiconductors as well as full devices. For these investigations, 

we want to go beyond resolving the static equilibrium state and 

include dynamic measurements upon in-situ application of elec-

trical, optical and mechanical stimuli or in-operando conditions.

The majority of (opto)electronic devices including diodes, tran-

sistors, and solar cells relies on semiconductor materials: Semi-

conductors feature an energetic gap of up to 3 eV between their 

occupied valance band and unoccupied conduction band, which 

electrons can overcome upon thermal, electrical or optical excita-

tion. Due to the band gap, the excited electrons in the conduction 

band and the remaining holes in the valance band exhibit a rel-

atively long lifetime and facilitate an electrical conduction that 

can be tuned via doping. Diodes combine n- and p-doped semi-

conductor regions to a pn-junction, which allows a unidirectional 

-

trode to switch the conductivity of a doped semiconductor; solar 

cells use optical excitation from the solar irradiance to excite elec-

trons across the band gap, which stabilizes holes and electrons 

However, surfaces and interfaces of semiconductors can locally 

affect the performance of semiconductor devices. Structural dis-

order, dangling bonds, and adsorbates can induce band bending 

via defects or unwanted doping, contaminations or recombina-

tion centers [2, 3]. Particularly, grain and domain boundaries in 

polycrystalline semiconductors are often detrimental to overall 

device performance since they pose as energetic barriers or lead 

to recombinative losses of excited charge carriers [4, 5]. 

To resolve the impact of the microstructure on the charge car-

rier transport in semiconductor devices, we are using electri-

cal and electromechanical scanning-probe microscopy (SPM) 

combined with luminescence measurements. The inherently 

correlative character of functional SPM allows to map micro-

structural features in the topography channel simultaneous to 

the electrical surface potential in the case of Kelvin probe force 

microscopy (KPFM) [6] or the sample’s conductivity (Figure 1a 

and b) [7]. Electromechanical SPM on the other hand can be 

employed to resolve features that can be invisible in the sam-

ple topography such as ferroelastic domain walls [8].

By combining these measurements with in-situ external optical 

or electrical excitation, we are able to resolve local electron-

ic changes such as surface band bending visible as positive 

or negative photo-charging under illumination in n-doped and 

p-doped semiconductors, respectively [9]. Or we can resolve 

the local increase in conductivity at the position of ferroelectric 

domain walls, where the structural disorder at the boundaries 

results in energetically unfavorable polarization orientations, 

compensated by a local increase in electrically injected charge 

carriers [10]. Currently, we are investigating how the electronic 

properties of the semiconductor microstructure is impacted by 

mechanical strain by incorporating an in-situ stretching stage 

into our SPM setups (Figure 1c). 

Since KPFM is unable to resolve the distribution of excitonic 

charge carriers, we are extending our functional SPM capabili-

ties with spatially resolved luminescence measurements. Cor-

related to the microstructure resolved in SPM, luminescence 

microscopy allows us to detect whether certain microstructural 

features are acting as non-radiative recombination centers or 

energetic barriers (Figure 1d). 
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Anisotropic charge carrier transport due to domain walls

In the past, we applied this combinatory SPM and lumines-

cence microscopy approach to resolve the impact of ferroe-

lastic twin domain walls on the charge carrier transport in the 

hybrid organic-inorganic perovskite semiconductor methyl-

ammonium lead iodide MAPbI3, which has been successfully 

implemented as active layer in perovskite solar cells [11]. For 

this study, we were able to resolve the topographically invisible 

domain structure on several µm-large single crystals of MAPbI3 

using electromechanical SPM, also called piezoresponse force 

microscopy (PFM). PFM measurements revealed domains of 

a few hundred nanometer width that spanned over the whole 

diameter of the grain. Using time-resolved photoluminescence 

(tr-PL) with a spatially decoupled excitation and detection, we 

were able to measure the charge carrier diffusion in depend-

-

crease of the diffusion times for those charges moving perpen-

dicular to the domain walls as compared to those charges that 

moved parallel to the domain walls (Figure 2).
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Currently, we are focusing on optimizing our experimental tool-

-

mensional synthetic semiconductors. 
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