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Illuminating Photodynamics with Machine 

Learning Techniques

When a molecule absorbs light, it enters a non-equilibrium state 

and triggers a cascade of non-adiabatic processes. Theoretical 

modeling of these electronic excitations and the subsequent pro-

cesses plays a crucial role in advancing fundamental research 

and driving technological innovation. However, accurate simula-

tion of both, the static properties of multiple electronic states 

and their dynamics, is limited by the resource-intensive nature of 

the underlying quantum chemical techniques. To overcome this 

bottleneck, the emergence of machine learning (ML) marks a 

breakthrough development that offers a vast amount of opportu-

nities to accelerate and facilitate excited state simulations [1-3]. 

There are various avenues for utilizing ML techniques in describ-

ing electronically excited states and their dynamics: On the one 

hand, ML can be employed in the analysis and interpretation of 

quantum chemical data, such as the result of excited state dy-

namics simulations [4-7]. On the other hand, when generating 

the underlying quantum chemical data via quantum chemical 

calculations, ML aids in  [8-9] and ac-

celerating predictions [10-17]. In the former context, a subset 

of approaches utilizes ML to identify optimal parameters for 

quantum chemical computations, such as constructing active 

-

tions [8]. A more extensive array of approaches focuses on the 

information to achieve higher computational speeds [10-17]. 

These ML potentials are suitable for describing time-dependent 

properties in dynamic simulations.

Machine learning photodynamics

Especially the ML approaches that replace many successive 

quantum chemical calculations with the faster ML calcula-

simulating non-adiabatic molecular dynamics (NAMD). These 

NAMD computations are based on two core components: elec-

tronic structure methods that are able to adequately describe 

the energetics and topology of excited-state potential energy 

surfaces, and MD algorithms accounting for non-adiabatic 

phenomena and trajectory propagation. 

In the realm of NAMD algorithms, various approaches have 

been developed, spanning from full quantum treatment of 

both, nuclei and electrons, to a combination of classical and 

quantum chemical methods [18]. Of particular interest among 

these approaches is the latter category, which enables sim-

ulations of relatively large molecules containing 10-100 at-

oms over moderate timeframes, ranging from femtoseconds 

to picoseconds. This strikes a balance between accuracy and 

computational resources. One method within the mixed quan-

tum-classical category, known as surface hopping (SH), has 

gained prominence due to its robustness and adaptability 

for extensions. Recently, it was combined with ML, which led 

to a considerable acceleration of SH simulations. Thanks to 

this speed-up, photodynamic studies can be performed with-

in hours, whereas they would otherwise take dozens of years 

[10, 12].

Incorporating ML into NAMD simulations usually involves the 

following steps (see Figure 1): First, training data is generated 

using quantum chemistry. This entails computing and storing 

electronic properties used in surface hopping, such as multiple 

potential energy surfaces, associated forces on atomic nuclei, 

and properties arising from interactions between electronic 

states (known as couplings), for various molecular geometries. 

In doing so, it is essential to select an appropriate approach 

from the pool of excited state methods, e.g. multi-reference 

methods (MRCI, CASSCF, CCSD) or time-dependent density 

functional theory (TDDFT), to adequately address the specif-

ic chemical or physical querie of interest. Next, this quantum 

chemical data is utilized to train ML models, which are statis-

tical models that learn the relationships between potential en-

ergies and other properties and molecular geometry. For this 

purpose, neural networks and kernel-based methods are the 

most widely used techniques [1, 10–17]. Subsequently, the 

ML-derived properties are incorporated into NAMD methods, 

such as wave packet techniques or surface hopping approach-

es. This means that instead of performing quantum chemical 

-

tained by requesting them from the trained ML model.

Nanosecond photodynamics simulations

Typically time steps of around 1 femtosecond are employed in 

NAMD simulations. This means that around a million calcula-

tions are needed to access information in the nanosecond time 

regime (for a single trajectory). Consequently, conventional tra-

jectory-based NAMD simulations are usually limited to picosec-

ond time scales. In contrast, ML-based dynamics can capture 

Jun.-Prof. Dr. Carolin Müller

Department Chemie und Pharmazie

Friedrich-Alexander-Universität Erlangen-Nürnberg

Nägelsbachstraße 25, D-91052 Erlangen

carolin.mueller6@googlemail.com 

https://carolin-m.github.io/

DOI-Nr.: 10.26125/0ehr-vk47



192

BUNSEN-MAGAZIN · 25. JAHRGANG · 6/2023

Zurück zum Inhaltsverzeichnis

TRENDS IN THEORETICAL CHEMISTRY

processes extending into the nanosecond range, representing 

a potential acceleration of approximately 1000 times. 

For example, Westermayr et al. illustrated that they could 

complete a simulation of surface hopping dynamics for the 

methylene immonium cation (CH2NH2
+) lasting 100 femto-

seconds using the SchNarc approach on a single CPU (2x 

Intel Xeon E5-2650 v3 CPU) in just 24 seconds [10]. This 

achievement enabled them to extend NAMD simulation times 

to the nanosecond range while maintaining a reasonable bal-

et al. conducted a 10 nanosecond simulation of trans-hex-

-

ing-driven ab initio molecular dynamics package PyRAI2MD

[12]. Employing the same tool, they were also able to ex-

plore the structures of octa-substituted [3]-ladderdienes on 

the subpicosecond timescale, a feat not previously realized 

[13]. Additionally, Young et al. recently presented the mlp-

train -

cient machine learning potentials for modelling light-induced 

Diels-Alder reactions involving up to 50 atoms in just one day 

(about 100 CPU hours) [14]. Furthermore, Gómez-Bombarel-

li et al. presented the neural network method DANN, which 

relies on diabatic states. This method accelerated the explo-

ration of the photoisomerization of azobenzene by a factor 

of six. Notably, their model not only exhibited high accuracy 

but also proved to be transferable across various azoben-

zene derivatives. This adaptability enabled them to predict 

reasonable photoisomerization quantum yields for previously 

unseen species [15].

Identification of photoinduced mechanism

Beyond accelerating dynamic calculations, ML offers opportu-

nities to simulate previously inaccessible systems and identify 

novel reaction mechanisms. For example, in the case of tyros-

areas of potential energy surfaces but yield inaccurate results 

elsewhere. However, different QC approaches can complement 

each other, and by selectively generating training data where 

QC methods are reliable, ML models were able to describe the 

system across various structures. This unveiled „roaming“ in 

simulations of tyrosine – a phenomenon initially only observed 

experimentally in formaldehyde [16].

In others studies, ML-NAMD opened avenues for the dis-

covery of photoreaction mechanism. For instance Wen and 

co-workers explored the all-light-driven rotation of a molec-

ular motor on up to 2 picosecond time scale. With the help 

of these ML-NAMD simulations they discovered that a par-

ticular intermediate shows shortcut photoinduced reactions, 

that share concical intersections similar to those of the pho-

toisomerization process by which the intermediate is formed. 

as structural distortion ultimately driving the unidirectional 

rotation of the motor [17]. In another example, Lopez et al. 

unraveled how substituents mechanistically affect the ultra-

fast dynamics and mechanism of [2+2]-photocycloadditions. 

Based on 2 picosecond ML-NAMD trajectories, they found that 

cyclopropyl-substituted [3]-ladderdienes prefer the [2+2]-cy-

cloaddition pathways, which could be directly related to exper-

imentally observed reaction yields [13].

Current and future directions

The successes achieved in recent years by ML-based NAMD 

simulations have opened new avenues for the fast and ef-

molecules. However, all these efforts highlight a persistent 

challenge, namely modeling crucial factors such as poten-

tial energy surfaces (which require balanced learning across 

multiple surfaces) and couplings using ML. This requires a 

careful generation of training data, which is particularly im-

portant when applying ML models in dynamics simulations. 

It is vital that this database encompasses a wide range of 

-

taset size so that over- or under-representation of certain 

regions is avoided. In addition, careful consideration is re-

quired when selecting data points in critical regions such as 

cone intersections where potential energy surfaces may have 

discontinuities and non-adiabatic coupling vectors may have 

singularities.

Fig. 1 -
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To overcome these challenges, there is an urgent need to de-

velop comprehensive, robust and diverse databases that thor-

NAMD simulations. Our ongoing research is dedicated to this 

for constructing vast databases in order to achieve a better 

balance between cost and accuracy in both, training and appli-

In conclusion, ML shows great potential for accelerating diverse 

simulations, especially in photochemistry and -physics. When 

applied adeptly, ML can simplify the analysis of light-driven pro-

cesses, providing profound insights. Though, ML is not a univer-

will remain essential, but ML will support and enhance them, so-

lidifying its status as an indispensable tool in theoretical chem-

istry – and beyond.
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