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Graphene: a revolutionary nanomaterial

Where can I start introducing graphene? We could say that 

graphene has started many revolutions thanks to its extraor-

dinary properties. The electronic band structure of graphene 

layers that forms graphite, it was discovered in 2004 when it 
 Graphene was discovered us-

ing adhesive tape on graphite when a single layer of graphene 

was deposited on top of a silicon substrate and its electronic 

properties measured. This is when the graphene revolution 

began. The scientists that did this discovery got awarded the 

dimensional material to be discovered, however, since then 

many other 2D materials have been found. 

Graphene is composed of carbon atoms and it is only one 

atom thick. These carbon atoms are arranged in a hexagonal 

honeycomb lattice structure and exhibit sp2 hybridisation. This 

hybridisation together with the atomic thickness (0.345 nm), 

give this unique material extraordinary properties, such as: ex-

tremely high electron and hole mobility values (>105 cm2V-1s-1) 

(>4,000 Wm-1K-1

(2.3% of light absorbance over a wide range of the visible spec-

-

Graphene is a semi metal and the electron hole symmetry is 

unique to graphene, at the Fermi level or Dirac point both elec-

trons and holes co-exist and these charge carriers can have a 

very high speed 106 m/s. That is why the particles in graphene 

behave as massless (energy momentum dispersion relation 

is linear) and they are described using the Dirac equation. 

Graphene has enabled the experimental study of many high 

energy and condensed matter physics phenomena that had 

been observed in graphene when two layers of graphene were 

exotic new physics still to be discovered.

Due to this unique linear energy momentum dispersion re-

lation, electrons in graphene interact strongly with photons 

across a wide range of the spectrum, theoretically covering 

the frequency from ultraviolet to infrared, and extending into 

terahertz or even radio frequency. Such broadband responsiv-

ity can be effectively controlled by the Fermi level of graphene 

through either electrostatic gating or optical pumping and 

make it an ideal material for optoelectronics.

The term graphene covers a family of materials since depend-

ing on the method used to manufacture it, it will have different 

properties and in turn will be used in different applications. 

In this short article, I will focus on the graphene that will be 

applied in electronics, optoelectronics, photonics, sensors and 

biosensor applications. 

It is now established that the technology to produce graphene 

for these applications is based on chemical vapour deposition 

(CVD). At close to 1,000 °C methane (or a carbon source) is 

introduced in the CVD reactor to form a continuous one atom 

thick graphene layer on top of a catalyst surface such as cop-

per. This graphene is typically polycrystalline (it is formed by 

coalescing grains of different size) and can be produced at 

200 mm wafer scale or even larger scales, although research 

After the growth step, graphene is transferred onto application 

substrates for integrating it into different components. This 

transfer process has many advantages but also certain disad-

vantages. Graphene can in principle be transferred onto any 

substrate, allowing the monolithic integration of graphene with 

other materials, thus reducing considerably manufacturing 

costs and paving the way for a relatively pain free industrial in-

tegration with silicon technology which is the backbone for the 

current semiconductor industry. As one of the main disadvan-

tages, we should point out that this transfer process can induce 

defects and residues on the graphene layer that could lead to a 

reduction of the electronic properties. Graphene offers unpre-

cedented advances in device performance that could pave the 

way for applications in photodetectors and modulators for im-

age sensors, light detection and ranging (LiDAR) and data com-

munications, radio-frequency devices, magnetic devices, Hall 

sensors, and all sorts of gas, chemical and biological sensors. 

These applications could be realized on an integrated CMOS 

(complementary metal oxide semiconductor) chip where silicon 

(Si) devices provide the driver, read-out and peripheral circuitry 

The road to commercialization of new advanced materials is 

very complex and requires many years (> 30 years) and large 

investments to generate substantial market impact. Graphene 

is no different in this perspective. Soon after the Nobel Prize 

was awarded to the discovery of graphene, the European Com-

mission decided to invest 1 billion € over 10 years into the re-

search of graphene and 2D materials. This Graphene Flagship 

ecosystem of diverse start-up companies within Europe that 
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will form the basis for the future graphene industry. Some of 

these start-up companies have been created with the mission 

-

ble next-level machine vision and safer driving cars in adverse 

weather conditions (Qurv Technologies, Emberion), in biomedi-

cal applications such as brain implants (InBrain Neuroelectron-

ics) and data communications (CamGraPhIC, Black Semicon-

ductor) just to mention a few.

Another interesting application worth mentioning for CVD 

-

sistors exhibit very high sensitivity and they could detect the 

presence of different biomolecules or bioreceptors (pathogens 

such as viruses, cancer or diverse disease biomarkers) at very 

low detection levels, revolutionising point of care applications. 

Graphene transistors present this extreme sensitivity due to 

the high surface to volume ratio (2D nature) and high sensitiv-

ity of the Fermi level to the presence of charged biomolecules 

-

ing technologies at device level and an easy integration with 

silicon CMOS technology, this will pave the way for introducing 

graphene into future commercial products.
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